
Reading 7

Topological spaces and
continuity

7.1 Some math philosophy
In mathematics, we often want to compare objects. For example, in previous
classes, I think you learned that you can “compare” the sizes of di�erent
sets. And the main tool we have for comparing the sizes of sets is (perhaps
counter-intuitively), the method of constructing functions between sets.1

For example, two sets have the same “size,” or cardinality, if and only if
there is a bijection between them.

7.1.1 Applying this philosophy to topology
In class, I’ve stated the slogan that “topology is the study of shapes.” What
is the appropriate way to compare di�erent shapes?

7.1.2 Shapes, not sets
Perhaps the most important idea we must deal with is that shapes and sets
are not the same thing. Certainly, shapes can be described as sets, but surely
they have more structure than just a collection of elements.

1It was probably a large breakthrough in the history of mathematics when we realized
that functions hold the key to comparing objects.
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For example, R is an uncountable set. On the other hand, the open ball of
radius 1 centered at the origin of R2 – which we write as Ball(0, 1) µ R2 – is
also uncountable. In fact, you can prove that these two sets are in bijection.2
But “clearly,” at least to our intuition, R and Ball(0, 1) are very di�erent
looking shapes. R seems 1-dimensional, for example, while Ball(0, 1) µ R2

seems 2-dimensional.
So a bijection alone can’t tell us whether two shapes seem “equivalent”

to us.
This is a game mathematicians play all the time. What structure should

two things have that distinguish them?
In a bit of terminological tautology, this structure is called a topology on

the set. We will define the word topology in Definition 7.2.1.

7.1.3 Continuous functions, not functions
And—just as with posets—once we have structures, we should ask for func-
tions that respect these structures.

The functions that respect the topological structures will be called con-
tinuous functions. We will define what a continuous function is in Defini-
tion 7.5.1.

7.2 Key definitions
Definition 7.2.1. Let X be a set, and let T be a subset of the power set of
X.3 We call T a topology on X, or simply a topology, if the following holds:

1. Both ÿ and X are elements of T.

2. For any collection {U–}–œA of elements in T, the union
€

–œA

U–

2Here is one proof: You can show that R is in bijection with the open interval (0, 1), so
R ◊ R is in bijection with (0, 1) ◊ (0, 1). Meanwhile the open interval (0, 1) is in bijection
with the open square (0, 1) ◊ (0, 1); so composing these bijections, we see that R is in
bijection with R◊R. On the other hand, we know that Ball(0, 1) admits an injection from
R, while the cardinality of Ball(0, 1) must be less than or equal to that of R2. Because
|R| Æ | Ball(0, 1)| Æ |R2| = |R| (here, the |R| refers to the cardinality of R) we conclude
that Ball(0, 1) and R have the same cardinality.

3In other words, T is a collection of subsets of X.
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is an element of T.4

3. For any finite collection {U–}–œA of elements in T, the intersection
‹

–œA

U–

is an element of T.5

Informally, T is picking out certain “special subsets” of X. So a topology
on X is a choice of certain special subsets. Moreover, the totality of these
special subsets must satisfy nice properties—the properties spelled out above.

This is one of the weirdest definitions that you’ve seen in your life. And
rightly so. It’s quite a whopper, and it’s still one of the more surprising kinds
of structures in mathematics.

But before we go on, let me just issue a big warning that a lot of students
get confused by:

Warning 7.2.2. T is NOT a subset of X. It is a subset of P(X).

7.2.1 Open subsets
Before we go to the next example, let me emphasize something. The adjective
“open” has been applied in this course to two di�erent settings:

• When X is not just a set, but a poset, we know what it means for a
subset of X to be “open.”

• When X = Rn, then we know what it means for a subset of X to be
“open.”

The same word is being used to describe two very di�erent kinds of
subsets—the first has to do with subsets that have some property with re-
spect to a partial order relation, while the second example has to do with
notions of open balls in Euclidean space. Same word, di�erent settings.

The one commonality, though, is that the collection of open sets forms
a topology in either example. In fact, the math community has adopted the
following tradition:

4That is, if each U– is in T, then so is the union
t

–œA U–.
5So if we have finitely many subsets U– µ X such that each U– is in T, then the

intersection
u

–œA is also in T.
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Definition 7.2.3 (Open subset). Let X be a set, and let T be a topology
on X. Then any member of T is called an open subset of X.

In other words, even though you are used to “open” having to do with
the notion of “remove the boundary points”6, today we have stepped into a
world where “open” means something completely strange. Indeed, “open”
has no meaning until somebody specifies a topology T. Only then may you
say whether a subset of X is open.

7.2.2 Topological spaces
We now know what a topology on a set is. It turns out that’s all we need to
know to understand what mathematicians call a “topological space:”

Definition 7.2.4. A pair (X,T)—of a set X, and a topology T on X—is
called a topological space.

Remark 7.2.5. Similarly, if P is a set, and if Æ is a partial order relation
on a set P , the pair (P, Æ) is called a poset. Of course, you have noticed me
being lazy, and sometimes I just write “let P be a poset,” with the relation
Æ being understood.

Likewise, I may often write “Let X be a topological space,” with the
choice of T to be understood, or implicit, or unspecified, in the notation.

7.3 Examples and exercises
Recall that a subset U µ Rn is called open if U can be written as a union of
open balls.

Theorem 7.3.1. Let X = Rn and let T = {U µ Rn | U is open}.7 Then T
is a topology on Rn.

You know that your definition is sophisticated if it takes a theorem to
produce examples. This is a good sign that we’re onto something good! We
will give the proof in Section 7.9.

6As in, (≠3, 3) µ R is an “open” interval, or the “open” ball Ball(x, r) µ Rn is a disk,
but with the boundary sphere of the disk removed.

7That is, T is the collection of open subsets of Rn.
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Definition 7.3.2. Let X = Rn, and let T denote the collection of all subsets
of Rn that can be expressed as unions of open balls. This T is called the
standard topology on Rn.

Exercise 7.3.3. Let (P, Æ) be a poset. Recall from homework that a subset
U µ P is called open if whenever p is an element of U , and whenever pÕ is
some element of P satisfying p Æ pÕ, we can conclude that pÕ œ U .

Let T := {U µ P | U is open}. In other words, we declare T to be the
collection of all open subsets of P as defined in the previous paragraph.

Show that T is a topology on P .

Definition 7.3.4. The T above is called the Alexandro� topology on P .

Given a definition, you should always look for the easiest examples. Here
are the two easiest kinds of topology on any set.

Definition 7.3.5. Let X be a set. The trivial topology on X is the topology
T = {ÿ, X}.

The discrete topology on X is the topology T = P(X).

Remark 7.3.6. In other words, the discrete topology is the topology for
which every subset of X is considered open.

The trivial topology is the one in which only the empty set and X itself
are considered open.

Exercise 7.3.7. Let X be a set. Prove that the discrete topology on X is a
topology.

Let X be a set. Prove that the trivial topology on X is a topology.

7.4 Reminders on preimages
Let’s have a quick reminder on what preimages are (Definition 1.9.1).

Let X, Y be sets, and let f : X æ Y be a function. Fix also a subset
V µ Y . Then the preimage of V (under f) is defined to be

f≠1(V ) := {x œ X | f(x) œ V }. (7.4.0.1)

In words, the preimage of V is the collection of everything in x whose image
lies in V .
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Example 7.4.1. For example, if f : R æ R is some function from calculus,
and if V = (0, Œ) µ R, then f≠1(V ) is the set of all real numbers x such
that f(x) > 0.

Warning 7.4.2. f≠1 in (7.4.0.1) does not refer to a function called “f -
inverse.” This notation is confusing but unfortunately common – f≠1 need
not make sense on its own (because f might not be a bijection! So it might
not have an inverse function). Instead, what makes sense is the full notation
f≠1(V ) when V is a subset of the codomain.

Warning 7.4.3. f≠1(V ) is a set. It is not an element of X.

7.5 Continuous functions
As I mentioned in the beginning of this lecture, we should also ask what
kinds of functions are deserving to be called maps of topological spaces.
Such functions are called continuous, and we define them as follows. Note
that the only structure we have at our disposal is a choice of T, so that’s all
we can use in defining what a continuous map ought to be.

7.5.1 Definition
Definition 7.5.1. Let (X,TX) and (Y,TY ) be topological spaces.8 A func-
tion f : X æ Y is called continuous if preimages of open subsets are open.

Remark 7.5.2. In other words, f is called continuous if the following holds:
For all open subsets V µ Y , the preimage f≠1(V ) is also open.

Remark 7.5.3. Using other symbols, f is continuous if and only if V œ
TY =∆ f≠1(V ) œ TX .

Remark 7.5.4. Let’s again use the tip that every definition consists of a type
and a condition. The adjective “continuous” applies to what type? It applies
to a function. In other words, the adjective “continuous” only describes
functions. It doesn’t describe sets, or spaces, or subsets; it only describes
functions.

8I am using a subscript X in TX to denote that TX is a topology on X, while TY is a
topology on Y .
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This is one of the trippy things about topology. While everybody likes
to think of R as a “continuum” or “a continuous thing,” in math, we will
almost never use the word continuous to describe a set like R, we will only
use the word continuous to describe functions between topological spaces.9

What is the condition we demand of the function (to call the function
continuous)? If V is an open subset of the codomain, then the collection of
all points that end up inside V is an open subset of the domain.

Exercise 7.5.5. Let X be a set and Y any topological space.
Show that any function f : X æ Y is continuous if X is given the discrete

topology.
Show that any function f : Y æ X is continuous if X is given the trivial

topology.

The following is an incredibly important property of continuous functions.

Proposition 7.5.6. Let X, Y, Z be topological spaces. Fix a continuous
function f : X æ Y and another continuous function g : Y æ Z. Then the
composition

g ¶ f : X æ Z

is also continuous.

Exercise 7.5.7. Prove Proposition 7.5.6.

Possible solution to Exercise 7.5.7. Let W µ Z be an open subset. We must
prove that (g ¶ f)≠1(W ) is an open subset of X. Observe:

(g ¶ f)≠1(W ) = {x œ X | (g ¶ f)(x) œ W}
= {x œ X | g(f(x)) œ W}
= {x œ X | f(x) œ g≠1(W )}
= f≠1(g≠1(W )).

But since g is assumed continuous, we know that g≠1(W ) is open. Hence
f≠1(g≠1(W )) is open (because f is also assumed continuous).

This completes the proof.
9Indeed, the notion of what we consider the “continuous” nature of R in real life actually

has to do with the “least upper bound” property of R, or the “complete” property of R,
both of which more or less tell us that there are no “holes” in R.
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7.6 Examples of continuous functions
The word “continuous” is now overloaded, in the sense that you have seen
it in two di�erent contexts—in this class, and also in calculus or analysis,
where continuity had a di�erent definition (presumably, a definition using
‘-”).

You will prove the equivalence of these two notions of continuity for home-
work. More precisely, you will show:

Theorem 7.6.1. Let f : R æ R be a function, and consider R as a topolog-
ical space by equipping it with the standard topology.

Then the following are equivalent:

1. f is continuous (in the sense of this lecture).

2. For every x in the domain, and for every ‘ > 0, there exists a ” > 0 so
that

|xÕ ≠ x| < ” =∆ |f(xÕ) ≠ f(x)| < ‘.

(In other words, for every xÕ satisfying the inequality involving ”, we
are guaranteed that f(xÕ) sastifies the inequality involving ‘.)

Remark 7.6.2. This says that the notion of continuity (from topology)
is identical to the notion of continuity (from calculus), at least when the
function has domain and codomain equal to R.

But to prove this theorem, you may want a few hints and tricks. The first
hint is that you won’t actually need to use the definition of absolute value,
or the definition of distance—you will only need to use the fact that, setting

dist(x, xÕ) = |xÕ ≠ x|,

distance satisfies the triangle inequality:

dist(x, xÕ) + dist(xÕ, xÕÕ) Æ dist(x, xÕÕ).

You will also want to use the fact that a subset of Rn is open if and only if
every element in it has “wiggle room.” (Look on a previous lecture to find
out what I mean by this.)
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Theorem 7.6.3. Let X = Rn and Y = R, both with the standard topology.
Then any function that is a finite sum or product of the “standard” functions
from calculus—polynomials in each coordinate, sin or cosine, et cetera—is
continuous.

The proof of the above theorem isn’t so bad, but I’ll leave it as an extra
credit assignment for future weeks. It’s the kind of fact that many students
would rather assume, so they can move on with their lives. So I won’t dwell
on it.

You may use the above theorem freely from now on.

Example 7.6.4. The following are all continuous functions from Rn to R:

(a) (x1, x2, . . . , xn) ‘æ x1.

(b) (x1, x2, . . . , xn) ‘æ x2.

(c) For any i between 1 and n, the projection map (x1, x2, . . . , xn) ‘æ xi.

(d) (x1, x2, . . . , xn) ‘æ x2
1 + x2

2 + . . . + x2
n.

(e) (x1, x2, . . . , xn) ‘æ
Ò

x2
1 + x2

2 + . . . + x2
n. (This is known as the “distance

from the origin” function.)

(f) More generally, for any y œ Rn, the function x ‘æ dist(x, y) is continuous.
(This is the “distance from y” function.)

(g) f(x1, . . . , x6) = sin(x1)x2 + cos(x4)ex5 ≠ fix6 is another example.

7.6.1 Continuous functions to Rn

Finally, let me state another source of continuous functions:

Theorem 7.6.5. Let X be a topological space, and equip Rn with the stan-
dard topology. Then a function

f : X æ Rn

is continuous if and only if the coordinate functions of f are continuous.
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What do we mean by coordinate functions? Well, for every x œ X, f(x)
is determined by a finite collection of real numbers:

f(x) = (f1(x), . . . , fn(x)).

Each number fi(x), 1 Æ i Æ n, is of course a coordinate of f(x). As we vary
x, we see that each fi(x) determines a function fi : X æ R. These f1, . . . , fn

are the coordinate functions of f .
So for example, a function from R to Rn is continuous if and only if each

of its coordinate functions are continuous.
From hereon, you may assume the above two theorems (except for when

you need to prove the first theorem in your upcoming homework).

7.7 Closed sets
Definition 7.7.1. Let X be a topological space with topology T. We say
that a subset K µ X is a closed subset if the complement of K is open.
(That is, if KC œ T.)
Proposition 7.7.2. Let X, Y be topological spaces and f : X æ Y a func-
tion. Then the following are equivalent:

1. f is continuous

2. The preimage of any closed set is closed.
Proof. Suppose f is continuous, and let K µ Y be closed. Then KC is open,
so f≠1(KC) is open. But f≠1(KC) = (f≠1(K))C , so (by definition of closed)
we conclude that f≠1(K) is closed.

Conversely, let V µ Y be open. We must show that f≠1(V ) is open.
Well, by definition of closed, V C µ Y is closed. Assuming (2), f≠1(V C) is
closed. Because f≠1(V C) = (f≠1(V ))C , we conclude that f≠1(V ) is open.
This proves f is continuous.

7.8 Homeomorphisms
So, when are two topological spaces equivalent?

Recall that for a poset, the notion of equivalence was exhibited by the
notion of a poset isomorphism. A function f : P æ Q is a poset isomorphism
if
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1. f is a map of posets,

2. f is a bijection10, and

3. The inverse to f is also a map of posets.

The notion of an equivalence of topological spaces is called a homeomorphism,
and is defined analogously:

Definition 7.8.1. Let X and Y be topological spaces, and let f : X æ Y
be a function. f is called a homeomoprhism if

1. f is continuous

2. f is a bijection, and

3. The inverse to f is continuous.

7.9 Proof of Theorem 7.3.1
Proof. To prove T is a topology, we must prove all three properties outlined
in Definition 7.2.1.

(1) First, we must show that ÿ and Rn are in T. We saw in the lecture
introducing open sets of Rn that ÿ is a union of open balls (it is the union of
an empty collection of open balls).11 Then, we also saw in that lecture that
Rn itself may be expressed as a union of open balls, so Rn is indeed open.

(2) Now we must prove that an arbitrary union of open sets is again open.
There are several ways to prove this, but let me prove it in a way that is not
too notationally taxing.

Recall that U µ Rn is open if and only if, for every x œ U , there exists a
real number r > 0 for which Ball(x, r) µ U . Now, if {U–}–œA is a collection
of open subsets, and if U = t

–œA U– is their union, choose any x œ U . We
must show that for some r > 0, Ball(x, r) µ U . Well, since x œ U , we know
there exists some – œ A such that x œ U–. For any such U–, we know that
U– is open, so there exists some r > 0 for which Ball(x, r) µ U–. So we see

Ball(x, r) µ U– µ U

10this guarantees that f has an inverse
11Again, this is not an important point; you might just treat it as technically true. If

you like, you may declare ÿ to be open by convention.
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so Ball(x, r) µ U , and we are finished with proving (2).
(3) We must prove that a finite intersection of open subsets of Rn is again

an open subset. So let U1, . . . , Uk be some finite collection of open subsets,
and let U = u

i=1,...,k Ui be their intersection. Again, we must show that for
any x œ U , there is some radius r > 0 such that the open ball Ball(x, r) is a
subset of U .

Well, since x is in the intersection of the Ui, we know that x is an element
of Ui for all i. And because each Ui is open by hypothesis, we thus know that
there is some number ri > 0 so that Ball(x, ri) is a subset of Ui. So let’s choose
such real numbers r1, . . . , rk. Note that if r < rÕ, then clearly Ball(x, r) µ
Ball(x, rÕ). So let r be the smallest real number among r1, r2, . . . , rk. Then
Ball(x, r) µ Ball(x, ri) for all i. So we can conclude that Ball(x, r) µ Ui for
all i. Hence, Ball(x, r) is a subset of the intersection U .

We have thus exhibited r > 0 for which Ball(x, r) µ U , so U is open.
This finishes the proof of the theorem.

Possible solution to Exercise 7.3.3. We must show that the Alexandro� topol-
ogy indeed satisfies the three conditions laid out in Definition 7.2.1.

1. We saw as an example in homework that, indeed, the empty set and P
itself are open.

2. You proved in homework that the union of open subsets of a poset is
again open.

3. Finally, in homework, you proved something stronger then required of
us: An intersection of any collection of open subsets is again open (not
just finite collections).

7.10 What you are expected to know
You should be familiar with the following four very di�erent-looking kinds of
topological spaces:

• For any n Ø 0, Rn is a topological space (when equipped with the
standard topology).
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• For any poset P , P is a topological space (when equipped with the
Alexandro� topology).

• For any set X, X is a topological space (when equipped with the dis-
crete topology).

• For any set X, X is a topological space (when equipped with the trivial
topology).

Remark 7.10.1. The last two examples highlight the need to specify the
topology when the notation for X doesn’t make it obvious. But rest assured
that, usually, we study Rn as a space with the standard topology, and a poset
P as a space with the Alexandro� topology – so we often won’t specify the
topologies on Rn and on a poset P in the notation.

You should know the definitions of:

1. Topology

2. Topological space

3. Open subset of a topological space

4. Closed subset of a topological space

5. Preimage

6. Continuous function

7. Homeomorphism

You are also expected to know various examples of continuous func-
tions between Euclidean spaces (with their standard topologies). And you
should know that continuous functions compose to be continuous (Proposi-
tion 7.5.6).


