
Reading 6

Closed sets, and practice

6.1 Miscellany

6.1.1 Definitions
Every definition is about specifying a name for a kind of object. It’s impor-
tant to look out for both the type of object being defined, and the condition
imposed on that type for the definition to apply.

For example, a function is called a bijection if it is both an injection and
a surjection. So, what is a bijection? The type of thing that a bijection is, is
a function. The condition for a function to be a bijection is that the function
be both injective and surjective.

Note that you would have no idea what a bijection is if you didn’t under-
stand the type (e.g., if you didn’t know what a function is1) nor the conditions
(e.g., if you didn’t know what an injection or a surjection are).

6.1.2 Understanding some statements
“The crepuscular petrichor, so powerful, so vitalizing as to encourage even the
Nebbish to ultracrepidarian pronouncements that would be ine�able to schol-
ars even after their the most dedicated lucubrations, awakened his senses.”

1And let me point out something: A function is not some thing you can always express
like f(x) = x

2 + 3x. In calculus, this is more or less what “function” meant, but having
taken more advanced math classes, you know that functions don’t always have domain
and codomain given by R.

1
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Most people have no idea what the above sentence means. But if it is
our task to understand it, how would we? At the very least we should use a
dictionary to look up the terms we don’t understand.

In this class, the dictionary is your notes, or the class notes (posted in
PDF format on the website). Sometimes, the dictionary is also the homework
assignment (I have defined terms in homework assignment PDFs, and will
continue to). Use these dictionaries.

And if you find that you need to look up almost every term in a sentence,
that’s fine. That’s how it goes sometimes.

Half the battle of proving a statement is understanding the statement.
Even before getting to the logical di�culties, you need to know what each of
the terms means.

6.1.3 Where are you stuck?
The most important life skill that you will take with you beyond this course
(if you work at developing it): The ability to identify where you are stuck.

Imagine you are a plumber, and a potential customer comes to you and
says “My house needs a fix.” You ask, okay, what about the house needs
fixing? And the customer says “I don’t know.”

You would want more information, yes? At the same time, it may be
completely reasonable for the customer (who is not a plumbing expert) to
not know how exactly to articulate their problem. A frustrating experience
for both!

When you are learning mathematics, or practicing any science, you are
both the customer and the plumber. You will have a problem (a house) which
you know you must solve or fix, yet have no idea how to go about it. But you
must be able to identify what part of this issue is causing your confusion, or
causing you to be stuck. If you don’t know which pipe needs fixing, how are
you going to fix it?

6.1.4 It’s normal to be stuck
If all you have ever taken are algebra and calculus classes, you probably have
a completely unrealistic expectation of how long a math problem takes to
solve. This is why you could probably do dozens of math problems a day if
you felt like it.
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Especially are you are transitioning to proof-based mathematics, and es-
pecially in this class (where homework problems are di�cult), this is an
unrealistic expectation. I expect most of you to try to think about the lec-
ture, or a problem, about an hour a day, and to not understand things for
most of those minutes. When you “think about” the problem or the lecture
notes, I expect you to be exploring the definitions, trying to understand ex-
amples, and also trying to produce examples yourself. It is this process of
doing things on your own that is most important–exploring math is, to a
mathematician, the same thing as a biologist finding specimen to study. You
need to do it.

And, as with most sciences, exploration is about being lost, or at the very
least, about wandering.

6.2 Review of complements
The nice thing about a class like this—which builds on previous classes—is
that we can review some concepts.

Definition 6.2.1 (Complements). Let A be a set, and B µ A a subset.
Then the complement of B (inside A) is

A \ B := {a œ A | a ”œ B}.

The complement is also sometimes denoted by

BC or A ≠ B.

In words, the complement of B is the set of all elements in A that are not
in B.

Example 6.2.2. If A = R and B = Q, then A \ B is the set of all irrational
numbers.

Example 6.2.3. If A = R and B = (≠5, 5), then A \ B is the set of all real
numbers whose absolute value is greater than or equal to 5.

6.3 Closed sets
You will explore this concept in your homework.
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Definition 6.3.1. A subset K µ Rn is called closed if the complement of K
is open.

Remark 6.3.2. A minor remark about the use of ‘if’ in definitions. When
defining a term, the word ‘if’ e�ectively means ‘if and only if.’ This is because
we wouldn’t call something “closed” if it weren’t closed.

Note that defining a term is completely di�erent from proving a statement
about a term. If this remark confuses you, you should reach out to Hiro. This
kind of mathematical language needs to be understood and used precisely!

Example 6.3.3. An example of a closed set is the complement of (≠5, 5) in
R. Another example of a closed set is the complement of an open ball in Rn.

Note that—just as with open sets—it is important to specify, or be aware
of, the “parent set” in which we are discussing closedness.

That’s it. You’ll have more practice in homework. Importantly, in home-
work, you’ll have to utilize a new concept, called convergence of a sequence.
As usual, keep in mind that proof takes a long time for most, so get started
as soon as you can.

6.4 Practice
For the rest of today, I want you to work on the following exercises:

6.4.1 Review of Pre-4330 material
These exercises are optional, and are meant to give you practice with material
you should have already seen before 4330. It’s okay to forget some of the
material over time, but you will immediately need to be able to do, and
understand, these kinds of problems.

Exercise 6.4.1. Consider the sets

A = {Rosa, Sara, Tina} and B = {Rosa, Tina}.

(a) Write down every element of A ◊ B.

(b) Write down every element of B ◊ A.

(c) Exhibit a bijection between A ◊ B and B ◊ A.



6.4. PRACTICE 5

(d) Write down every element of A \ B.

Exercise 6.4.2. Let A be a set with 3 elements, and B a set with 4 elements.
How many functions are there from A to B? How many functions are there
from B to A?

Exercise 6.4.3. (a) Give an example of a finite set.

(b) Give an example of a countably infinite set.

(c) Give an example of an uncountably infinite set.

(d) True or False: R is countable.

(e) True or False: Rn is countable.

(f) True or False: Q is countable.

6.4.2 Posets
Exercise 6.4.4. How many functions are there from [1] to itself?

Of these, write down the functions that are not maps of posets.

Exercise 6.4.5. “Draw” the set [2] ◊ [2]. (Not as a poset; just draw the 3 x
3 array that you might normally draw for this product set.)

Then, draw the relation Æ. In other words, draw the subset of [2] ◊ [2]
associated to the relation Æ.

Exercise 6.4.6. Let A be a set. The discrete relation, or the diagonal
relation, on A is the subset �A µ A ◊ A defined by

�A = {(a, a)}.

In other words, �A consists of all ordered pairs (a, b) œ A◊A for whicha = b.
Prove that �A defines a partial order relation. This is called the discrete

partial order.

Exercise 6.4.7. (a) Give an example of a poset map P æ Q that is a
bijection, but is not an isomorphism of posets.
(Hint: What if P = Q as sets, and the codomain is given a non-discrete
partial order, but the domain is given a discrete partial order?)
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(b) Let P be a poset. Is it possible that there is a poset map from P to
itself, which is a bijection, but which is not an isomorphism of posets?
(To be clear: Both the domain and codomain copies of P have the same
poset structure.)

6.4.3 Open sets
Exercise 6.4.8. For each of the following, determine whether each of the
following subsets is open or closed in Rn. No need to write a proof. This is
to give you experience in tinkering.

(a) Rn itself.

(b) ÿ

(c) The open ball Ball(x, r) centered at x, of radius r > 0.

(d) Fix two points x, xÕ œ Rn and two real numbers r, rÕ > 0. The union
Ball(x, r) t Ball(xÕ, rÕ). (If you haven’t done this before: Make sure to
draw a picture of what this looks like for various choices of x, xÕ, r, rÕ in
R2. The drawing won’t help you answer whether union is open, but it is
good practice.)

(e) R2 \ {(x1.0)}, in R2.

(f) The set of all points x œ Rn of distance strictly less than 1 away from
the origin.

(g) Fix a real number a > 0. The set (≠a, a) ◊ (≠a, a) ◊ (≠a, a) µ R3.

Exercise 6.4.9. Below, you will be given an indexing set A and a set U– µ
Rn for each – œ A. Determine if either of t

– U– or u
– U– is open in Rn.

No need to write a proof. This is to give you experience in tinkering.

1. Let A be the set of positive real numbers, and for all – œ A, define U–

to be Ball(0, –) where 0 œ Rn is the origin.

2. Let A be the set of positive real numbers, and for all – œ A, define U–

to be the set (≠–, –) ◊ . . . ◊ (≠–, –) µ Rn. (Here, the direct product
of open intervals is taken n times.)
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3. Let A be the set of all elements of Rn having rational coordinates, and
for all – œ A, let U– = Ball(–, 1). (For a x œ Rn to have rational
coordinates means that each x1, x2, . . . , xn is a rational number).

4. Fix a point x œ Rn. Let A be the set of all rational numbers, and for
all – œ A, let U– = Ball(x, –).

5. Let A µ Rn be the set of all n-tuples (x1, . . . , xn) such that |x1| + . . . +
|xn| < 1. For all – œ A, let U– = {–} µ Rn be the one-point set
containing –.

6. Let A be the set of all positive real numbers. For all – œ A, let
U– = R ◊ (≠–, –) µ R2.

6.4.4 Looking ahead
Exercise 6.4.10. Let f : R æ R ◊ R be the function sending x to (x, x).
Suppose V µ R ◊ R is open. Prove that f≠1(V ) is open.

Exercise 6.4.11. Let a : R ◊ R æ R be the function (x1, x2) ‘æ x1 + x2.
Let V µ R be open. Prove that a≠1(V ) is open.

Exercise 6.4.12. Let m : R◊R æ R be the function (x1, x2) ‘æ x1 · x2. Let
V µ R be open. Prove that m≠1(V ) is open.


