Reading 2

Important sets and subsets in topology

2.1 Euclidean spaces

2.1.1 The real line

As you know, \mathbb{R} is the set of all real numbers. So \mathbb{R} contains numbers such as $0,1 / 3,-5, \pi, e$, and $\sqrt{2}$. One can visualize \mathbb{R} as a line. Indeed, it is sometimes referred to as "the real line."

Figure 2.1: The real line \mathbb{R}, with some elements indicated.

2.1.2 The plane

\mathbb{R}^{2} is the set consisting of all pairs $\left(x_{1}, x_{2}\right)$ where both x_{1} and x_{2} are real numbers. In previous classes, you may have been used to writing an element of \mathbb{R}^{2} as (x, y) instead. Well, letters are precious, so in our class, we will often write $\left(x_{1}, x_{2}\right)$ instead.

Though we have only defined \mathbb{R}^{2} as a set so far, as you know, it can be visualized as the usual "x-y plane." An element of \mathbb{R}^{2} can be visualized as a point, or dot, inside the $\mathrm{x}-\mathrm{y}$ plane. The origin is the point $(0,0)$. Other
points are as follows:
$(1,1), \quad(3,0), \quad(3 / 4,1 / \pi), \quad\left(\frac{-e}{2}, 0\right), \quad(-3, \pi)$

Figure 2.2: The plane, \mathbb{R}^{2}, with some elements labeled.
Note that \mathbb{R}^{2} seems to contain a "copy" of \mathbb{R}, often called the x-axis, or in our class, the x_{1}-axis. It has a "vertical" copy of \mathbb{R} as well, often called the y-axis, or in our class, the x_{2}-axis.

2.1.3 Three-dimensional Euclidean space

\mathbb{R}^{3} is the set consisting of all triples $\left(x_{1}, x_{2}, x_{3}\right)$ where each x_{i} (for $i=1,2,3$) is a real number. This set can also be visualized as "three-dimensional space," where the origin $(0,0,0)$ is placed at the center, and the numbers x_{1}, x_{2}, x_{3} are the distances from the so-called "coordinate planes" of space. These distances uniquely determine a point "floating" in space.

Another way to think about the coordinates x_{1}, x_{2}, x_{3} of a point are as instructions: Begin at the origin. Walk x_{1} units along the x_{1}-axis, then x_{2} units in the direction of the x_{2}-axis, then x_{3} units in the direction of the x_{3}-axis.

Figure 2.3: Euclidean space, \mathbb{R}^{3}, with some points labeled. Drawn also are the $x_{1^{-}}, x_{2^{-}}$, and x_{3}-axes. The positive parts of these axes are drawn in solid, while the negative parts of the axes are drawn in dashes.

2.1.4 Higher-dimensional Euclidean spaces

More generally, for any integer $n \geq 0, \mathbb{R}^{n}$ denotes the set of all n-tuples, $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ where each x_{i} is a real number. For example, an element of \mathbb{R}^{4} is a quadruple $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ of four real numbers. These sets are much harder to visualize, but are natural sets to consider.

By convention, \mathbb{R}^{0} is declared to be a set with exactly one element. Informally, \mathbb{R}^{0} is just "a point."

Note that there is a natural function p from \mathbb{R}^{4} to \mathbb{R}^{3} that "forgets" the last coordinate. That is, it sends

$$
p:\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{1}, x_{2}, x_{3}\right) .
$$

Thus, though subsets of \mathbb{R}^{4} are hard to visualize (because \mathbb{R}^{4} is hard to visualize) we often take a subset $A \subset \mathbb{R}^{4}$ and examine its image $p(A) \subset \mathbb{R}^{3}$ to begin to understand A.

2.2 Intervals

Intervals are very nice subsets of \mathbb{R}. If you choose any pair of real numbers a and b such that $a \leq b$, we can define intervals

$$
[a, b], \quad(a, b), \quad(a, b], \quad[a, b) .
$$

The first interval is a closed interval (it includes the endpoints a and b) while the second interval is an open interval (it does not include the endpoints). The last two intervals are neither open nor closed.

Of course, be warned that (a, b) here is the usual open interval inside \mathbb{R}; it does not symbolize a point in \mathbb{R}^{2}. The fact that these notations are "double-booked" is just a fact of history and life; we must live with it. It is often clear from context whether (a, b) refers to an interval or to a point of \mathbb{R}^{2}.

Of course, there are other intervals, such as:

$$
(a, \infty), \quad(-\infty, b), \quad(-\infty, \infty), \quad[a, \infty), \quad(-\infty, b]
$$

All these intervals are infinitely long. The first two intervals are open. The last two are closed.

Do you know whether the interval $(-\infty, \infty)$ (this interval is actually the entirety of \mathbb{R}) is considered open or closed (or both, or neither)?

2.3 Simplices

Definition 2.3.1. Fix an integer $n \geq 0$. We let the standard n-simplex be the subset

$$
\Delta^{n}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \mid \sum_{i=1}^{n+1} x_{i}=1 \text { and for all } i, 0 \leq x_{i} .\right\} \subset \mathbb{R}^{n+1}
$$

Sometimes, we will just call Δ^{n} the n-simplex, dropping the word "standard."
The plural form of simplex is simplices.
Note that, by definition, the n-simplex is a subset of \mathbb{R}^{n+1}. So for example, the 2-simplex is a subset of \mathbb{R}^{3}.

Sometimes, we will re-index the coordinates and write an element of \mathbb{R}^{n+1} as a tuple $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$. (Note that the indexing here begins with 0 , not 1.)

Exercise 2.3.2. (a) Draw the n-simplex, and how it sits inside \mathbb{R}^{n+1}, for $n=0,1,2$.
(b) How many points does Δ^{0} contain?
(c) (Optional.) Do you know what the 3-simplex looks like?

Believe it or not, the simplices turn out to be among the most important shapes in all of topology.

2.4 Spheres

Definition 2.4.1. Fix an integer $n \geq 0$. We let the n-dimensional sphere to be the subset

$$
S^{n}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \mid \sum_{i=1}^{n+1} x_{i}^{2}=1 .\right\} \subset \mathbb{R}^{n+1}
$$

Sometimes, we will call S^{n} the n-sphere, dropping the word "dimensional."
Exercise 2.4.2. (a) Draw the n-sphere, and how it sits inside \mathbb{R}^{n+1}, for $n=0,1,2$.
(b) How many points does S^{0} contain?
(c) Is there another name for the 1 -sphere?
(d) (Optional.) Do you know what the 3-sphere looks like?

Spheres (of all dimensions) are also among the most important shapes in math.

2.5 Disks

Definition 2.5.1. Fix an integer $n \geq 0$. We let the n-dimensional closed disk to be the subset

$$
D^{n}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid \sum_{i=1}^{n} x_{i}^{2} \leq 1 .\right\} \subset \mathbb{R}^{n}
$$

Sometimes, we will call D^{n} the closed n-disk, dropping the word "dimensional."

Exercise 2.5.2. (a) Draw the closed n-disk, and how it sits inside \mathbb{R}^{n}, for $n=0,1,2,3$.
(b) How many points does D^{0} contain?
(c) Is there another name for the closed 1-disk?
(d) Is there some relationship between the "boundary" of the closed n-disk and the $(n-1)$-sphere?

Closed disks (of all dimensions) are also among the most important shapes in math.

2.6 Balls, open and closed

Fix a point $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ in \mathbb{R}^{n}. Fix also a real number $r>0$.
Definition 2.6.1. The closed ball of radius r centered at y is the set

$$
\overline{\operatorname{Ball}(y, r)}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid \sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2} \leq r^{2}\right\} \subset \mathbb{R}^{n}
$$

The open ball of radius r centered at y is the set

$$
\operatorname{Ball}(y, r):=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid \sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}<r^{2}\right\} \subset \mathbb{R}^{n}
$$

Don't be confused: y is not some other coordinate; y is another point in \mathbb{R}^{n}; that is, an element of \mathbb{R}^{n}. In past classes, you may have written \vec{y}, but we will be lazy and simply write an element of \mathbb{R}^{n} as y, and denote its coordinates by y_{1}, \ldots, y_{n}.

Exercise 2.6.2. (a) Draw (in \mathbb{R}^{2}) the closed ball of radius 3 centered at $y=(3,0)$.
(b) Is there a relationship between the closed ball of radius 1 centered at the origin of \mathbb{R}^{n}, and the closed n-disk?
(c) Draw (in \mathbb{R}^{2}) the open ball of radius 3 centered at $y=(3,0)$.
(d) In \mathbb{R}^{n}, the open ball of radius 1 centered at the origin, and the closed ball of radius 1 centered at the origin, are different sets. How does the "difference" between these two sets relate to spheres?

2.7 Cubes

Definition 2.7.1. The closed unit n-cube is the set

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \mid \text { for all } i, 0 \leq x_{i} \leq 1\right\} \subset \mathbb{R}^{n}
$$

Exercise 2.7.2. (a) Draw, for $n=1,2,3$, the unit n-cube.

