So far: Defined "topological space" (X, J)

(i) Producing Examples:	(A) Find ways to describe spaces
Rn Euc. space	· compact (Thm: [Heine-Borel] A < Rn
P Posets	(compact \Leftrightarrow A is closed 4 bounded)
XxY Products	• Housdorff (Thm: X is housdorff $\iff \Delta < X \times X$)
X/~ Quetient	lis closed
A < X Subspaces	
(X.d) Metric spaces	Properties of Spaces satisfy:
	> If X is homeomorphic to y, then X has
	property P 👄 Y has property P

set Atopology

Defiled X be a topological space we say X is path-connected if V x, x C X, there exists a path connecting X to X'

X=3

we say & is a path from X(0) to X(1) & that X(0) connects to X (1)

Defn: A potto in a top. space, X, is a cts. fxn $\chi: [0,1] \longrightarrow X$

> C withe subspace topology inherited

from (R, Jstd)

Ex: R is path-connected Pf: fix x,x' $\in \mathbb{R}$. we will be the function s.t. $\gamma(0) = x \notin \gamma(1) = x'$. Consider the function $[0,1] \longrightarrow \mathbb{R}$

 $t \mapsto x + t (x'-x)$ Note: $\gamma(0) = x = 3$ $\gamma(0) = x / x' = -9$ $\gamma(0) = x' = -9$ $\gamma(1) = x' / x' = -9$ $\gamma(1) = x' = -9$ $\gamma(1) = x' / x' = -9$ $\gamma(1) = x' = -9$ γ

Pf: WTS ∃ X, X' ∈ A s.t. $\forall \gamma$: [0,1] → A w| γ (0) = X, γ (1) = X'. reannot be cts. so choose X ∈ A s.t. X, <0, X' ∈ A s.t. X', >0. If γ (0)=X, 4 γ (1)=X', then γ (0)₁ <0.4 γ (1)₁>0.

$$[0,1] \xrightarrow{7} A \subset \mathbb{R}^{2}$$

$$\downarrow \mathbb{R}$$

$$\mathbb{R}$$

Because composition preserves continuity, "7 cts ⇒ 71=P1 • 7 is cts" But 7 element of A wlx-coordinate equal to zero

- (2) How're we using IVT?
- (3) connected V. Path-connected