Questions!
3.) If X is Itausdorff, then the diagonal of X is closed. Not tans $\Rightarrow \Delta$ NoT closed
Δ closed \Rightarrow taus
3'.) If the diagonal is closed, then X is Hausdorff.
6.) Not tans \Rightarrow D Not closed and a Not open
6^{\prime}.)

The contrapositive of "p $\Rightarrow q$ 'I is \quad "~q $\Rightarrow \sim p$ " ("N ot \Rightarrow vat $p^{\prime \prime}$)

Lontmpositive of b.) if D is closed or open then X is Hausdorff.

Today: Metric spaces
Informally: A metric space is a set X equipped with a way to mearune "the" distance between any two points of X.
(To be able) to give a distance to any pair of points is to give a function
satisfying:
1.) $\forall x \in X, d(x, x)=0$ A $d\left(\forall x, x^{\prime} \in X, d\left(x, x^{\prime}\right)=0\right.$

$$
\Rightarrow x=x^{\prime}
$$

2.) $\forall_{x, x^{\prime} \in X, d\left(x, x^{\prime}\right)}=d\left(x^{\prime}, x\right)$
3.) $\forall x, x^{\prime}, x^{\prime \prime}, d\left(x, x^{\prime}\right)+d\left(x^{\prime}, x^{\prime \prime}\right) \geq d\left(x, x^{\prime \prime}\right)$

Definition: A metric space is a set X equipped with a metric d. We often say that (x, d) is a metric space or that x is a metric space (leaving d implicit).
$E x:$ Let $x=\mathbb{R}^{n}$, and $d: 1 R^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{2}$

$$
\begin{aligned}
& \left(x, x^{\prime}\right) \\
& \text { melic. }
\end{aligned}
$$

This is called the standard metic.

Proof (1.): clearly $d(x, x)=0$. On the other hand, if $d\left(x, x^{\prime}\right)=0$ then $\sum_{i=1}^{n}\left(x_{i}^{\prime}-x_{i}\right)^{2}=0$. So $\forall_{i}, x_{i}=x_{i}^{\prime} \Rightarrow x=x^{\prime}$.

Proof 2.): $d\left(x, x^{\prime}\right)=\sqrt{\sum\left(x_{i}-x_{i}\right)^{2}}=\sqrt{\sum\left(x_{i}-x_{i}^{\prime}\right)^{2}}=d\left(x^{\prime}, x\right)$
Proof 3.): "d $d\left(x, x^{\prime \prime}\right)^{2}=\sum\left(x_{i}{ }^{\prime \prime}-x_{i}\right)^{2}$
${ }^{2 .)}\left(d\left(x, x^{\prime}\right)+d\left(x^{\prime}, x^{\prime \prime}\right)\right)^{2}=\sum\left(x_{1}^{\prime}-x_{i}\right)^{2}+\sum\left(x_{i}^{\prime \prime}-x_{i}^{\prime}\right)^{2}+2 d\left(x_{i} x^{\prime}\right) d\left(x_{i} x^{\prime \prime}\right)$ TB

If you grant me 3.) for $n=2$: Note that three points $x_{1} x^{\prime}, x^{\prime \prime}$ in $\mathbb{R}^{n}(n \geq 3)$ determine at least one plane containing $x, x^{\prime}, x^{\prime \prime}$.

Ex: Let $x=\mathbb{R}^{n}$, and d $d_{1 \infty}: \mathbb{R}^{n} x \mathbb{R}^{n} \longrightarrow \mathbb{R}$

$$
\underset{i=1, \ldots, n}{\left(x, x^{\prime}\right) \longmapsto \max \left|x_{i}^{\prime}-x_{i}\right|}
$$

This is called the 1^{0} metric on $\pi 2^{n}$.

$$
\begin{aligned}
& \left.n=3: x=(7,12,1) \quad x^{\prime}=4,0,4\right) \\
& d, 0\left(x, x^{\prime}\right)=\max \{11-71,10-121,14-11\}=\max \{6,12,3\}=12
\end{aligned}
$$

Definition: Let (x, d) be a metric space. Fix $x \in X$ and $r \in \mathbb{R}$ with $r>0$. The open ball of radius r centered at x is the set satisfying

$$
\text { Ball }(x, r)=\left\{x^{\prime} \in X \mid d\left(x, x^{\prime}\right)<v\right\} \text {. }
$$

Definition: let (x, d) be a metric space. The metric topology on X (or, the topology induced by d) is $\{\cup C X \mid \cup$ can be written as a union of open balls?
$E x:$ Let $x=\{f:[0,1] \rightarrow \mathbb{R} \mid f$ is continuous $\}$

棟
Define $d: x \times x \rightarrow 1 R$
$(f, g) \longmapsto \int_{0}^{1}|g(x)-f(x)| d x$
proposition! d is a metric on x
(L 'metric on X)
Proof (1): if $t=g, d(f, g)=\int_{0}^{1}|g(x)-f(x)| d x$

$$
=\int_{0}^{1} 0 d x=0
$$

If $f \neq g$, then $d(f, g)>0 . f \neq y \Rightarrow \exists_{x \in[0,1]}$
such that $|g(x)-f(x)|>0$.

