10/24/23 Questions! 3.) IF X is Hausdorff, then the diagonal of X is closed. Not Have D N NOT closed B closed => Itaus 3'.) IF the diagonal is closed, then X is Hausdo-FF. 6.) Not Hand => 10 NOT closed and 10 Not open (،'ما 4 The contrapositive of "p=>q" is "nq => ~p" ("Notq=> Notp") Contrapositive of 6.) if D is closed or open them X is Havidor Ft. Havsdorff. Today : Metric Spaces Informally . A metric space is a set X equipped with a way to measure " the' distance between any two points of X. (To be able) to give a distance to any pair of points is to give a function d: X X X TR (X, X') H d(X, X') saticfyrng : [Non - de sen ena up) $(.) \forall x \in X, d(x, x) = D AND \forall x, x' \in X, d(x, x') = 0$ $\Rightarrow x = x'$ 2) $\forall_{x,x' \in X}, d(x, x') = d(x', x)$ 3.) $\forall_{x,x',x''}, d(x, x') + d(x', x'') \ge d(x, x'')$ Definition'. A metric space is a set χ excepted with a metric d. we often say that (X, d) is a metric space or that X is a metric space (leaving of implicit).

Ex: Let
$$X = tR^n$$
, and $d: tR^n \times tR^n \longrightarrow tR$
Lx, X^1) $\mapsto \sqrt{\frac{2}{5}}(x_1^{(1-x_1)})^{\frac{1}{5}}$
This is called the trundend metric.
Proof 1): cleanly $d(x,x) = 0$. on the other hand, if $d(x,x') = 0$
then $\frac{2}{5}(x_1^{(1-x_1)})^{\frac{1}{5}} = 0$. So $\forall i, x_1 = x_1' \implies x = x'$.
Proof 2.): $d(x_1x') = \sqrt{\frac{2}{5}(x_1^{(1-x_1)})^{\frac{1}{5}} = \sqrt{\frac{2}{5}(x_1 - x_1')^{\frac{1}{5}}} = d(x',x)}$
Proof 3.): $d(x_1x'')^{\frac{1}{5}} = \frac{2}{5}(x_1' - x_1)^{\frac{1}{5}} = \sqrt{\frac{2}{5}(x_1 - x_1')^{\frac{1}{5}}} = d(x',x') + d(x',x'')$
Proof 3.): $d(x_1x'')^{\frac{1}{5}} = \frac{2}{5}(x_1' - x_1)^{\frac{1}{5}} + \frac{2}{5}d(x_1,x'') + d(x',x'')}$
TBD
14 you grant me 3.) for $n \ge 2$. Note that three points χ, χ', χ'' in
 $tR^n (n \ge 3)$ determine at least one plane containing χ, χ', χ'' .
(Darget for the second dy: $tR^n \times tR^n \longrightarrow tR^n$.
Finally $\chi'' = \frac{1}{5}(x_1, y_1) \longrightarrow tR^n = \frac{1}{5}(x_1' - x_1)$
Thus is called the 10 metric on tR^n .
 $N = 3$: $\chi = (x_1, x_1, y_1) \longrightarrow t = (x_1, y_1, y_1) \longrightarrow t = 1$, $y_1, y_2 = 1$.

Definition' let (X, d) be a metric space. Fix XEX and rette with r>0. The open ball of radius r centered at X is the set satisfying Ball (X,r) = & X'EX | d(X, X') < r }. Definition: let (X, d) be a metric space. The metric topology on X Lor, the topology induced by d) is SUCXIU can be written as a union of open balls?

Ex: let X = & A: EO, 13 -> 12 | A is continuous }

Such that | glx) - flx) |> 0.