Questions of the Day:
-"well defined" is a term used to make sure that a formula makes sense
ex) $f([x])=f(x)$
$\bar{f}($ [candice $])=$ candice's bay
$\bar{f}([$ person $x])=$ person x 's bay

this is not well-defined
-often to verify that " \bar{f} " is well defined" is to show $x \sim x^{\prime} \Rightarrow f(x)=f\left(x^{\prime}\right)$
note: in hi sin $(2 y)$ should be $\sin (2 x)$
Today:Hausdorff-ness
motivation: we now have many topological spaces.

$$
P \quad A \subset \mathbb{R}^{n} \quad X x Y
$$

\downarrow
Alp
Hausdorffness is a property (of a topological space) preserved under homeomonphisms-so it helps us distinguish spaces.
Def.(Hausdorff): Fix a topological space X. X is called hausdorff if $\forall x, x^{\prime} \in X$ st $x \neq x^{\prime}, \exists u, u^{\prime} \subset X$ st
a) U^{\prime}, U^{\prime} are open
2) $x \in U$ and $x^{\prime} \in U^{\prime}$
3) $U \cap U^{\prime}=\varnothing$
ex)

ex) let $X=[1]$ w/ the Alexandroff topology

- $X=\{0,1\}$
let $x=0, x^{\prime}=1$

$$
\begin{aligned}
& U=\{0,1\} \\
& U^{\prime}=\{1\}
\end{aligned}
$$

so $U \cap u^{\prime}=\{1\}$
$0 \leq 1$
let U be an open set ω / O as an
element.
so, $O \in u$, $\quad i \in X$ st $0 \leq 1$,
note that $\mathcal{S}=\{\varnothing,\{1\},\{0,1\}\}$.

Corollary (imimed ate consequence): let. $Y=\{0,1\}$ with the discrete topology then Y is not homeomarphic to $X=[1]$
ex) any discrete space is hausdorff (given $x \neq x^{\prime}$, let $u=\{x\}, u^{\prime}=\left\{x^{\prime}\right\}$
so $U \cap U^{\prime}=\varnothing$)
examples of horeomor phic spaces:
 \approx

basically a shape that was pinched
(if you have a point in D? and then pinch the Shape to change it, the point is. Still there but it moves)
examples of spaces not homeomorphic to D^{2} (nor each other):

not path connected
(while in D2, if you remove a point you can still connect 2 points through another path).

To show $\mathrm{D}^{\wedge} 1$ is not home to $\mathrm{D}^{\wedge} 2$, note that no matter what point you remove from $D^{\wedge} 2$, the resulting shape is path-connected, but you can remove a point from $\mathrm{D}^{\wedge 1}$ so that the resulting shape is not pathconnected:

