Date: October 12, 2023
Recall: (from cal 3) Given a function

$$
\underset{1}{f}: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n}, x \longmapsto f(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right) .
$$

f is continuous if and only if each $f_{1}, f_{2}, \ldots, f_{n}$ is
 continuous.

Example: $m=1, n=3, f(t)=(t, \cos (t), \sin (t)) \|$ Helix\| Then $f,(t)=t$, $f_{2}(t)=\cos (t), f_{3}(t)=\sin (t)$

Note: $\mathbb{R}^{n}=\mathbb{R}_{n-c o p l e s}^{x \ldots x \mathbb{R}}$
Today: Theres a generalization of
proposition: A function $f: W \rightarrow X \times Y$ is continuous iff each component of f is continuous.

Definition (product topology): Let x and Y be topological spaces. Then the product topology is on $x \times y$
$\tau_{x \times y}:=\{U \subset x \times y: U$ can be written as a union

$$
\begin{aligned}
& !!\bigcup_{\text {product }} \quad \ldots=\bigcup_{\alpha \in A} U_{\alpha} \times V_{\alpha} \text { where each } U_{\alpha} \text { is in } \tau_{x} \text {, and each... } \\
& \left.\ldots V_{\alpha} \in \tau_{y}\right\}
\end{aligned}
$$

Another example: $\vec{V}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$
$U: \mathbb{R}^{3} \longrightarrow \mathbb{R}$

$$
u=\bigcup_{\alpha \in A} \phi x \emptyset
$$

L electrical potential (voltage) Turns out. $\nabla U=\vec{v}$

Example: $\quad x=Y=\mathbb{R}$

- An example of a $U_{\alpha} \in \tau_{x}$ is $(-1,3) \subset \mathbb{R}$

$$
V_{\alpha} \in \tau_{y} \text { is }(\pi, 2 \pi) \subset \mathbb{R}
$$

Then: $U_{\alpha} \times V_{\alpha}=$

Because $U_{\alpha} \times V_{\alpha}=\left\{\left(x_{1}, x_{2}\right): x_{1} \in(-1,3) \& x_{2} \in(\pi, 2 \pi)\right\}$
Ex: Ball $(0,3) \subset \mathbb{R}^{2}$ is open the product topology.

Hence $\tau_{\text {std }} c \tau_{\text {product. }}$

In fact, open rectangles T/I///d are open in $\tau_{\text {std }}$ so $\tau_{\text {std }}>\tau_{\text {product. }}$
The. $\tau_{\text {std }}$ on \mathbb{R}^{n} is $\tau_{\text {product }}$ on $\mathbb{R}^{n} . \mathbb{R}^{n}=\underbrace{\mathbb{R} \ldots}_{n} \times \mathbb{R}$

$$
\cong \mathbb{R} \times\left(\mathbb{R}^{n-1}\right)
$$

Ex: We now have an (interesting) topology on $[5] \times \mathbb{R}^{3}$.
The (part of Universal property of product topology): A function
$W \longrightarrow X \times Y$ is continuous if $p_{x} \circ f$ and $p_{y} \circ f$ are continuous.

Notation:

Example:

Def: Fix a collection of spaces $\left\{X_{\beta}\right\}_{\beta} \in B$. The product topology on $\prod_{\beta \in B} X_{\beta} \ldots A_{n}$ (infinite) direct product of sets: An \ldots IS the collection of clement of $\prod_{\beta \in B} X_{\beta}$ is a choice of $X_{\beta} \in X_{\beta}$ subsets that can be
Written as a union of for every $\beta \in B$
sets of the form
$\prod_{\beta \in B^{\prime}} X_{\beta} \times \prod_{\beta \in \beta^{\prime \prime}} U_{\beta}$ where $B^{\prime \prime}$ is finite, $B^{\prime} \cup B^{\prime \prime}=B$.
EX: $B=\mathbb{Z} \forall_{\beta}$ let $X_{\beta}=[-|\beta|,|\beta|]$. An element of $\prod_{\beta \in \mathbb{Z}} X_{\beta}$ is a sequence $\left(X_{\beta}\right)_{B \in \mathbb{Z}}$ such that $\forall_{\beta \in \mathbb{Z}}, X_{\beta} \in[-|\beta|,|\beta|]$.
Ex: Let $B=\mathbb{Z} \geq 1, \forall_{\beta} \in B$, let $X_{\beta}=\mathbb{R}$. Then $\prod_{\beta \neq 2 \geq 1} X_{\beta}=\left\{\begin{array}{l}\left.x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right) \\ \forall \neq \mathbb{Z}\end{array}\right)$ $\left.: \forall_{\beta} \in \mathbb{Z}_{\geq 1}, X_{\beta} \in \mathbb{R}\right\}$
$\mathbb{R} \times \mathbb{R} \times(-3,1) \times(1,5) \times \mathbb{R} \times \mathbb{R} \times$ is open
$(-1,1) \times(-1,1) \times(-1,1) \times(-1,1) \times \ldots$ is NOT open.

