last time: open subset of R" deg: U < R" is called open if U is a union of open balls O leg: A subset U of R^N is called open iff: Vx EUL JrER, r>0 s.t. Ball (x,r) < ll prop: U satisfies ⊙ ⇔ U satisfies ⊙

Given a subset $A \in X$ recall that the complement of A is the set of all $x \in X$ not in A. Often we write A^c for the complement (of A in X). Denoted $A^c = \{x \in X \mid x \notin A\}$

Notation: $X \setminus A$ (or X-A) = A^c

A subset K C R^N is called closed if K^c is open.

It's possible for some subsets to be open and closed

