last time:
open sulast of \mathbb{R}^{N}
def: $U \subset \mathbb{R}^{n}$ is called open if U is a union of open bales
(-) def: A subset u of \mathbb{R}^{N} is called open inf:

$$
\begin{aligned}
& \forall x \in U \\
& \exists r \in \mathbb{R}, r>0
\end{aligned}
$$

vet. Ball $(x, r) \in U$
prop: U satisfies (a)
$\Leftrightarrow u$ satisfies (b)

Given a subset $A \in X$ recall that the complement of A is the set of all $x \in X$ Not in A. Often we write A^{c} for the complement (of A in X). Denoted $A^{c}=\{x \in X \mid x \notin A\}$

Notation: $X \backslash A($ or $X-A)=A^{C}$
A subset $K \subset \mathbb{R}^{N}$ is called closed if K^{c} is open.
4 It's possible for some subsets to be open and closed

