DATE: September 7,2023

$$
\left\|S^{3} \subset \mathbb{R}^{4} \cong \mathbb{R}^{2} \times \mathbb{R}^{2} \cong \mathbb{C} \times \mathbb{C}\right\| p: S^{3} \longrightarrow \mathbb{C} \times \mathbb{R} \cong \mathbb{R}^{3}
$$

Last time:
Open subsets of \mathbb{R}^{N}
Def ${ }^{(0)} U \subset \mathbb{R}^{N}$ is called open if U is a union of open balls.
Defn ${ }^{(0)}$ A subset U of \mathbb{R}^{N} is called open iff:

$$
\forall_{x} \in U, \exists_{r} \in \mathbb{R}, r>0 \text {, such that Ball }(x, y) \subset u
$$

proposition: U satisfies (a) $\Leftrightarrow U$ satisfies (b)
Today: Given a subset $A \subset X$ recall that the complement of A is the set of all $x \in X$ NOT in A. often, we write
A^{C} for the complement (of A in X) in other words,

$$
A^{c}:=\{x \in X: x \notin A\}
$$

Ex:

$$
\begin{aligned}
& \Rightarrow A^{c}=\left(\begin{array}{c}
\text { rms } \\
i-1 \\
i
\end{array}\right) \\
& =>A^{c}=\left(\begin{array}{c}
1 \\
1-1 \\
1 \\
1 \\
1 \\
-1
\end{array}\right)
\end{aligned}
$$

Notation: Sometimes we write:

$$
X \backslash A(\operatorname{or} \quad X-A)
$$

to mean A^{c}
Ex:

$$
\begin{aligned}
\mathbb{Z} \mid\{0\} & =\{0\}^{c}(\text { in } \mathbb{Z}) \\
& =\{\ldots-2,-1,1,2, \ldots\}
\end{aligned}
$$

Defn: A subset $k \subset \mathbb{R}^{N}$ is called closed if K^{c} is open.

It is possible for some subsets to be both open \& closed.

