open subsets of \mathbb{R}^{n}
note: different than HW, open subset of posers
(ix. $n=1$
prop: fix an integer $n \geq 0$, and a subset $u \subset \mathbb{R}^{n}$ the following are equivalent:
(a) 4 can be written as a union of open balls

$$
n=2
$$

recall: an open ball in \mathbb{R}^{n} is a sot of the form

$$
B a \|(x, r):=\left\{y \in \mathbb{R}^{n} \text { s.t. } \operatorname{dist}(x, y)<r\right\}
$$

$$
\text { Lx. Ball }(x, 2)=\underset{x-2}{\underbrace{x}_{2} x^{x+2}}
$$

$$
\text { (b) } \forall x \in u, \exists r>o(r \in \mathbb{R}) \text { s.t. Ball }(x, r)<u
$$

for statement (a) to be equivalent to (b) means

$(a) \Rightarrow(b)$ and $(b) \Rightarrow(a)$
def: a subset $u \subset \mathbb{R}^{n}$ is called open if u satisfies wither (a) or (b).
whether u is open depends on n

fit in 4
proof: (of prop) wis that $(a) \Rightarrow(b)$ and $(b) \Rightarrow$ (a)
wis $(b) \Rightarrow(a)$ wa assume (b) and show (a)
by (b), wi know that $\forall x, \exists r_{x}>0$ s.t. Ball $\left(x, r_{x}\right) \subset u$
claim: $\bigcup_{x \in y} B$ all $\left(x, r_{x}\right)=4$ now to show sots are equal: they have the same elements their subsets g asch other (easier way)
proof of claim: LHS CRHS

$$
y \in \bigcup_{x \in U} B a \|\left(x, r_{x}\right) \Rightarrow \exists x \in U \text { s.t. } y \in \operatorname{Ba\| }\left(x, r_{x}\right)
$$

but by construction $\operatorname{Ball}\left(x, r_{x}\right) \subset U$
so $y \in u$
start w/ ament in LHS, wets it is in RHS
RHSCLHS
fix $x \in U$, then $x \in B a \|\left(x, r_{x}\right)$
you can pick any x and make a Ball around
it that is in u.
$w+s(a) \Rightarrow(b)$
by (a) we know there is some indexing set A and a collection $\left\{l x_{\alpha}, r_{\alpha}\right\}_{\alpha \in A}$

$$
\text { sit. } U=\bigcup_{\alpha \in A} B a \|\left(x_{\alpha}, r_{\alpha}\right)
$$

fix some $x \in U$ wis an $r>0$, $r \in \mathbb{R}$, sit. $B a l l(x, y) \subset u$ by assumption, \exists some α s.t. $x \in$ Ball $\left(x_{\alpha}, r_{\alpha}\right)$ choose an r sit. $r+\operatorname{dist}\left(x, x_{\alpha}\right)<r_{\alpha}$
than $\forall y \in \operatorname{Ball}(x, r)$

$$
\operatorname{dist}\left(y, x_{\alpha}\right) \leq \operatorname{dist}(y, x)+\operatorname{dist}\left(x, x_{\alpha}\right)
$$

(triangle inequality)

$$
\begin{aligned}
& <r+\operatorname{dist}\left(x, x_{\alpha}\right) \\
& <r_{\alpha}
\end{aligned}
$$

than $y \in \operatorname{Ball}\left(x_{\alpha}, r_{\alpha}\right)$ i. є. $B a\|(x, r) \subset B a\|\left(x_{\alpha}, y_{\alpha}\right)$
since Ball $\left(x_{\alpha}, r_{\alpha}\right) \subset U$, we conclude Ball $(x, y) \subset U_{\|}$
remark: the proof of mi prop only involve a notation of distance satisfying the $\Delta \leq$, so Me prop must be true for any sit w / such structure
exampus of open subsuts:

