

their subsets of room other (rasier way)

proof q claim: LHS c RHS $y \in V$ Ball $(x, r_x) \Rightarrow \exists x \in Y \ s.t. y \in Ball (x, r_x)$ but by construction Ball $(x, r_x) \in U$ $sb y \in U$ $sb y \in U$ start w/ clement in LHS, with it is in RHS $<math>r_x \in U$, then $x \in Ball (x, r_x)$ $(Ball (x, r_x) = V$ $r_y = V$ $r_y =$

it that is in u.

wts (a) ⇒ lb)

by (a) we know there is some indexing set A and a collection $\{x_{\alpha}, r_{\alpha}\}_{\alpha \in A}$ s.t. U = V Ball (x_{α}, r_{α})

fix some xell wis an r > 0, ref, s.t. Ball (x,y) cu by assumption, \exists some a set. xe Ball (x_a, r_a) choose an r s.t. $r \neq d_1 st(x_1, x_2) < r_a$ then $\forall y \in Ball(x, r)$

 $dist(y, x_{k}) \leq dist(y, x) + dist(x, x_{k})$

(triangle iniquality)

 $< r + dist(x, x_{\lambda})$

< Y d

thin y \in Ball (x_{A}, r_{A}) i.e. Ball (x_{r}, r) \subset Ball (x_{A}, y_{A}) since Ball (x_{A}, r_{A}) \subseteq U, we conclude Ball (x_{r}, y_{r}) \subseteq U//

rumark: the proof of this propenly involve a notation of distance satisfying the DS, so the propendition transforming set w/ such structure

