Date: Septemper 5, 2028

$$(p, z):$$

$$(p, z):$$

$$(p \neq q)^{2} Defn Fix a poset P. A subset Of P is called Open if:$$

$$(p \neq q)^{2} Defn Fix a poset P. A subset of P is called Open if:$$

$$(p \neq q)^{2} Defn Fix a poset P. A subset of P is called Open if:$$

$$(p \neq q)^{2} Defn Fix a poset P. A subset of P is called Open if:$$

$$(p \neq q)^{2} Defn Fix a poset P. A subset of the subset, and q p p for which
(P is an element of the subset.
$$(P \in p(p) < => U < P$$

$$(P = V) < P$$

$$($$$$

Recall: For statement

(a) to be equivalent to statement (b) means:

$$(\alpha) = (b)$$
 and $(b) = (a)$

Defn A subset $U \subset \mathbb{R}^n$ is called open if U satisfies either (hence both) of (a) & (b).

A Whether U is open depends on n!

 $\frac{\text{proof}}{4x}$, $\exists r_x > 0$ such that Ball $(x, r_x) \in U$. By (b), we know that

Claim:

$$\begin{array}{c} P \operatorname{roof} \operatorname{of} \operatorname{Claim:} \\ \cdot \operatorname{LHS} \subset \operatorname{RHS} \cdot \operatorname{wny}? \\ \cdot \operatorname{LHS} \subset \operatorname{RHS} \cdot \operatorname{wny}? \\ \end{array}$$

$$\begin{array}{c} \cdot \operatorname{LHS} \subset \operatorname{RHS} \cdot \operatorname{wny}? \\ \cdot \operatorname{LHS} \subset \operatorname{RHS} \cdot \operatorname{wny}? \\ \end{array}$$

$$\begin{array}{c} \cdot \operatorname{LHS} \subset \operatorname{RHS} \cdot \operatorname{wny}? \\ \cdot \operatorname{LHS} \subset \operatorname{LHS} \cdot \operatorname{r_x} \\ \cdot \operatorname{RHS} \subset \operatorname{LHS} \cdot \operatorname{Fix} \times \operatorname{eu}, \ \operatorname{then} \times \operatorname{eBell}(x, r_x) \\ \end{array}$$

Lets prove (a) => (b). By (a), we know there is some indexing set A, and a collection $\mathcal{E}(X_a, r_a)$ because that

i.e, Ball $(x, r) \in Ball (x_{\alpha}, r_{\alpha})$. Since $Ball (x_{\alpha}, r_{\alpha}) \in U$, we conclude Ball $(x, r) \in U$.

RMK: The proof of this proposition (and its statement) only involve a notion of distance satisfying the triangular inequality. So the prop must be true for any set (not just R) with such structure. Such a thing is colled metric space.

Ex:

$$Ex:$$

 u (S (+ open?)
 R^2
 \Rightarrow If $U = Ball(x, 2) = \bigcup Ball(x, 2)$