Date: September 5, 2023

$$
(\bar{p}, \leq)
$$

- $p \neq q$? Defn: Fix a poset p. A subset ${ }^{u}$ of p is called open if :
$L>$ Whenever \tilde{p} is an element of the subset, ${ }^{\text {loner case }}$ and \quad ex: $q=p$, we know 9 is an element of the subset.

$$
\text { - } U \in \rho(p) \Leftrightarrow U<P
$$

- upward closed \rightarrow you are going up without getting out of the extension.

Open subsets of Euclidean space.

Today: Open subsets of \mathbb{R}^{n}
Ex (of u):
How: Open subsets of a poser.

$$
n=1 \text {, }
$$

proposition: Fix $n \geq 0$, and a subset $\cup \subset \mathbb{R}^{n}$, The following are equivalent.
a) U can be written as a union

$$
n=2 \text {, }
$$ of open balls.

Recall: An open ball in \mathbb{R}^{n} is a set of the form :

$$
\text { Ball }(x, r)
$$

some $x \in \mathbb{R}^{n}, r>0$
b) $\forall x \in U, \exists r>0 \quad(r \in \mathbb{R})$, such that

Ball $(x, r) \subset U$

$$
U \subset \mathbb{R}^{2}
$$

Recall: For statement
(a) to be equivalent to statement (b) means:
$(a)=>(b)$ and $(b)=>(a)$

Defn A subset $u \subset \mathbb{R}^{n}$ is called open if U satisfies either (hence both) of $(a) \&(b)$.

A Whether u is open depends on n !

proof: (of proposition): Lets prove $(b) \Rightarrow(a)$. By (b), we know that $\forall x, \exists r_{x}>0$ such that Ball $\left(x, r_{x}\right) \subset u$.
proof of claim:

- LHS CRHS why?

$$
\begin{aligned}
y \in \bigcup_{x \in u} B a l l\left(x, r_{x}\right) \Rightarrow & \exists x \in U \text { such that } \\
& y \in \operatorname{Ball}\left(x, r_{x}\right)
\end{aligned}
$$

But by construction,

$$
\operatorname{Ball}\left(x, r_{x}\right) \subset U \text {. }
$$

so $y \in u$.

- RHS CLHS: Fix $x \in u$, then $x \in \operatorname{Ball}(x, r x)$.

Lets prove $(a) \Rightarrow(b)$. By (a), we know there is some Indexing set A, and a collection $\left\{\left(x_{\alpha}, r_{\alpha}\right)\right\}_{\alpha \in A}$ such that

$$
u \in \bigcup_{\alpha \in A} \operatorname{Ball}\left(x_{\alpha}, r_{\alpha}\right)
$$

We Choose an r
so that:
$l_{>} F_{i x}$ some $x \in U$. We must exhibit some real \# $r>0$ such that Ball $(x, r) \subset U$. By

$$
r+\operatorname{dist}\left(x, x_{\alpha}\right)<r_{\alpha} \text {. }
$$

Then $\forall y \in$ Ball (x, r). assumption, \exists some α such that
 by choice of

Triangular inequality:

$$
x \in \operatorname{Ball}\left(x_{\alpha}, r_{\alpha}\right) \quad \text { dist }(y, x) \leq \operatorname{dist}(y, x)+\operatorname{dist}\left(x, x_{d}\right)<r+\operatorname{dist}\left(x, x_{\alpha}\right)<r_{\alpha}
$$

i.e, Ball $(x, r) \subset$ Ball $\left(x_{\alpha}, r_{\alpha}\right)$. Since $\operatorname{Ball}\left(x_{\alpha}, r_{\alpha}\right) \subset U$, we conclude Ball $(x, r) \subset u$. //

RMK: The proof of this proposition (and its statement) only involve a notion of distance satisfying the triangular inequality. So the prop must be true for any set (not Just \mathbb{R}^{n}) with such structure. Such a thing is called metric space.

Examples: \forall integer $n \geq 0, \varnothing \subset \mathbb{R}^{n}$ is open.
Ex: $\mathbb{R}^{n} \subset \mathbb{R}^{n}$ is open

Ex:
Ex:

$$
\rightarrow \text { if } u=\operatorname{Ball}(x, 2)=\bigcup_{\operatorname{Ball}}(x, 2)
$$

