DATE: August 31,2023 Unions \ddagger Intersections write one for hire. $\quad \int_{\text {shechem to }}^{\text {chose }}$
homework \#1 : Exhibit, bijection between $P(A)$ and the set of all functions from A to the two elements set $\{0,1\}$.

A bijection is a function from

A to $\{0,1\}$ \qquad ${ }_{n}$ \longrightarrow \qquad
"Every bijection has an inverse."

Ex: $A=\varnothing \quad A=N \quad A=\{$ apple, benenen $\} \quad A=\mathbb{Z} \quad A=\{1\}$
A

Example:
apperemen

$$
\begin{aligned}
& A=\{a, b, c\} \\
& \{f: A \rightarrow\{0,1\}\} \\
& A=\{a, b, c, d, e\} \\
& B=\left\{J_{\text {on }}, \text { Jerry }, \text { Ron }\right\} \\
& \\
& \{f: A \longrightarrow B\}=3^{5} \\
& \\
& \{f: B \longrightarrow A\}=5^{3}
\end{aligned}
$$

llorder of domains matter

Definition \neq Explanation (A deft (of a term) is Just a stand in for an Idea).
Definition \neq Elaboration Ex: S^{2}

$$
S^{2}:=\left\{\left(x_{0}, x_{1}, x_{2}\right) \in \mathbb{R}^{3}: x_{0}^{2}+x_{1}^{2}+x_{2}^{2}=1\right\} \text { or } S^{2} \text { is the set }
$$ of elements in \mathbb{R}^{3} having distance 1 from origin.

Fix a set X, and a set, and a set A and a function.

Notation: We write $\left\{U_{\alpha}\right\}_{\alpha \in A}$ for this function.
Definition: The union of $\left\{U_{\alpha}\right\}_{\alpha \in A}$ is the set:

$$
\bigcup_{\alpha \in A} U_{\alpha}:=\left\{x \in X: \text { for ot least one } \alpha \in A, x \in U_{\alpha}\right\}
$$

$$
\text { 1. } A=\{a, b\}
$$

The intersection of $\left\{u_{\alpha}\right\}_{\alpha \in A}$ is the set:

$$
\bigcap_{\alpha \in A} u_{\alpha}:=\left\{x \in X: \text { for every } \alpha \in A, x \in u_{\alpha}\right\}
$$

