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A motivation in the context of our summer school

This is a summer school on what some people have come to call “Floer
homotopy theory.” Why do the topics of operads and spectra fit into such
a summer school?

First, the Floer-type invariants that people find most concrete are certain
groups. And most of these groups arise from chain complexes produced by
analytic constructions. Modern algebra recognizes that chain complexes lie
in the theory of modules over Z, but Z is a particular ring. From higher-
algebraic perspectives, a more fundamental ring is S, the sphere spectrum.
Thus a natural question – which was asked (and an affirmative answer hinted
at) in Floer’s original works1 – is whether these invariants actually arise from
well-chosen S-modules, otherwise known as spectra. In other words, can we
create Floer-type invariants that are spectra? The answer has been yes
in many examples, and an open problem at the moment is a satisfactory
construction of versions of Fukaya categories that are enriched over spectra
(as opposed to chain complexes).

Second, one has always had more than mere groups in this game. Floer
theory often gives rise to graded rings, for example. Sometimes these graded
rings have more structure – they may be commutative, or they may have a
Poisson structure; they may also have a degree 1 operator. One never likes
a situation where structures appear in different places without a framework
for organizing them all. Operads are precisely a language developed for
organizing algebraic structures (though only for operations with one output,
not multiple). I will indicate both the naturalness, and the clunkiness, of
the classical notion of operads.

This is how the topics fit into the bigger mathematical world. I believe
this summer school is meant to orient you in this landscape, which can look
disjointed and confusing to a newcomer.

Not apparent from the names of these topics is another trend in math-
ematics. We have, in the last two decades, developed a robust and highly
satisfactory theory of ∞-categories. For those who do not work in the field,
the word “∞” is a mysterious one. The proliferation of this prefix can induce
the same discomfort one feels when witnessing the explosion of “quantum”
appearing in every math term possible. What’s next, quantum ∞-proofs?

1See Figure .0.0.1
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10 A MOTIVATION IN THE CONTEXT OF OUR SUMMER SCHOOL

What is often under-appreciated is that the theory of ∞-categories, as
developed first by André Joyal and later by Jacob Lurie, is actually rooted
in the combinatorics of posets. Indeed, the discovery of ∞-categories might
be phrased as the discovery that the collection of linear, finite posets contain
enough structure to organize almost all homotopical phenomena one encoun-
ters in life. (This is under the assumption that all homotopical structures
you want are rooted in some model for spaces and for associativity.)

I had to balance a lot in these lectures – set you up with the vocabulary
to understand emerging research, explain how the homotopical ideas relate
to the analytical ideas of Floer theory, and (this is a personal mission I have
affixed, independent of requests of the organizers) catch some glimpses of
the Wizard of Oz behind the ∞-curtain. I didn’t quite pull off everything,
but I hope that these notes will be a resource for the topics I did manage to
write about.
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Figure .0.0.1. An excerpt from Floer’s paper. Andreas Floer, “Witten’s
complex and infinite-dimensional Morse theory.” J. Differential Geom.
30(1): 207-221 (1989). DOI: 10.4310/jdg/1214443291.
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A request for pictures and corrections

If you notice any images missing (I will indicate by blue font where I
would love an image to be made), please feel free to submit an image –
preferably drawn (on a tablet, on a sheet of paper, etc) – to incorporate. It
would be lovely to have these images, and in case of redundancies, it would
be lovely to have a gallery of images submitted by you.

And, of course, if you spot any typos, please feel free to e-mail Hiro to
let him know.
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LECTURE I

Spectra as “abelian groups” (abelianness,
homotopically)

1

One can give many equivalent definitions of spectra. We give a definition
that (we think) is most easily accessed and motivated for algebra: Spectra
are topological spaces equipped with the data of being “abelian groups” in
a homotopically natural sense.

This is the model of spectra as infinite loop spaces, also called Ω-spectra
in much of the literature. (Definition I.2.0.1.)

Warning I.0.0.1. Spectrum could mean the spectrum of a linear oper-
ator; it could mean the Zariski spectrum of a commutative ring; or it could
mean the Balmer spectrum of a tensor-triangulated category. None of these
is the notion of spectrum in these lectures.

See also Section I.8 for some discussion on what others might mean by
an “abelian group” in homotopy theory.

I.1. Proving Abelianness

A topologist’s favorite objects do not arise as abelian groups, but as
topological spaces. How might a space aficionado incorporate “additivity”
into their world?

I.1.1. Homotopy groups. There are probably two places you first en-
counter groups in an algebraic topology course: (Co)homology, and funda-
mental groups. The former is an artificial source, as one forces a coefficient
group into the picture. In contrast, the fundamental group arises from a
topological fact: Loops compose.

Recollection I.1.1.1. Fix a topological space X and a basepoint x0 ∈
X. The fundamental group

π1(X,x0)

is defined to be the set of homotopy classes of continuous maps γ : [0, 1]→
X such that γ(0) = γ(1) = x0.

2 The group multiplication is induced by
concatenating paths.

1Note. This lecture is nearly identical to the first lecture I gave at the MSRI lecture
series on spectra in Spring 2019 (during the Derived Algebraic Geometry program).

2We demand that the homotopies are homotopies through maps satisfying this
condition.
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20 I. SPECTRA AS “ABELIAN GROUPS” (ABELIANNESS, HOMOTOPICALLY)

Notation I.1.1.2. When X is path-connected, we will often leave the
basepoint implicit and write π1(X).

Example I.1.1.3. If X = S1 is the circle, then π1(S
1) ∼= Z, where the

isomorphism is given by the winding number.
If X = S1 ∨ S1 is the wedge sum of two circles, otherwise known as a

figure eight, then π1(S
1 ∨S1) ∼= Z ∗Z is the free (non-abelian) group on two

generators.

The fundamental group π1(X,x0) is rarely abelian, so we surely aren’t
in any realm of “abelianness.” But the higher homotopy groups are abelian.

Definition I.1.1.4. Fix a basepoint x0 ∈ x. Recall that

π2(X,x0)

is defined to be the set of homotopy classes of continuous paths

γ : [0, 1]× [0, 1]→ X

such that γ sends the boundary of the square [0, 1]× [0, 1] to the basepoint
x0.

More generally,
πn(X,x0)

is the set of homotopy classes of maps from an n-dimensional cube to X,
such that the boundary of the cube is sent to x0. We call πn(X,x0) the nth
homotopy group of X (based at x0).

Group multiplication [γ2][γ1] is defined by choosing an embedding of
two cubes into a single cube, and then defining a map which equals γ1 and
γ2 on the two embedded cubes, but is constant with value x0 outside the
embedded cubes. (See Figure I.1.1.5.)

γ1

γ2

Figure I.1.1.5. A representative of the product [γ2][γ1], induced by an em-
bedding of two cubes into one.
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I.1.2. Why are higher homotopy groups abelian? The proof that
higher homotopy groups are abelian is called the Eckmann-Hilton argument,
which exhibits a homotopy between the multiplications [γ2][γ1] and [γ1][γ2].
For example, for π2, one often draws a picture as follows:

Figure I.1.2.1. A homotopy swapping the placement of two embedded
cubes.

Because the multiplication with γ1 and γ2 swapped is homotopic to
the original composition (via the drawn homotopy), we conclude [γ2][γ1] =
[γ1][γ2] ∈ π2.

This proof is worth examining. For example, what if we post-compose,
or pre-compose, the homotopy of Figure I.1.2.1 with the homotopy given by
one cube winding around the other cube?

Figure I.1.2.2. A homotopy from a multiplication to itself.

The result is another homotopy showing [γ2][γ1] = [γ1][γ2]; and this
homotopy is different from the previous one. Indeed, the number of times
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22 I. SPECTRA AS “ABELIAN GROUPS” (ABELIANNESS, HOMOTOPICALLY)

we wind around (the winding number) distinguishes the homotopies. In
other words, although [γ2][γ1] is homotopic to [γ1][γ2], there are inequivalent
ways in which they are homotopic.

Takeaway. The space of ways in which we witness π2 being
abelian is not trivial.

How about π3? This is also abelian. And because we can move around
in three dimensions now (as we homotope cubes past each other) the loop
depicted in Figure I.1.2.2 can be made null-homotopic.

Figure I.1.2.3. A disk/dome exhibiting a null homotopy of the loop from
Figure I.1.2.2.

So the winding number obstruction is trivializable in the Eckmann-
Hilton argument for π3.

But while we have depicted a northern hemisphere in Figure I.1.2.3
to trivialize a winding number, a friend (or nemesis) could have chosen
a southern hemisphere. Thus the way to try and trivialize your proof of
abelianness is non-canonical – to nullify the winding number, you have to
make choices, and this choice is again non-trivial, because we see a non-
contractible 2-sphere appear. So again, the collection of ways in which (one
can prove that) π3 is abelian forms a non-trivial space. Of course there is
nothing special about n = 2 and n = 3. For general n, we witness a sphere
of dimension n− 1 appear.

So even though each πn(X,x0) is abelian for n ≥ 2, Mother Nature does
not make these groups canonically abelian.

What happens as n goes to infinity? We can transport the proof of the
abelianness of πn to a proof of πn+1 being abelian by (pictorially) taking
direct products with closed intervals; in this way we get embeddings

Sn−1 ⊂ Sn ⊂ . . .

of the spaces appearing when we try to prove πn to be abelian. The key
observation is that these non-trivial spaces of abelian-witnessing become
simpler as we go to higher dimensions: S∞ = lim−→n

Sn is contractible.
So as n goes to infinity, we can articulate abelianness with only con-

tractible ambiguity about how we want to express the fact that composition
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order doesn’t matter. And to a homotopy theorist, contractibility is triv-
iality. That is, we can witness an “abelianness” which is homotopically
canonical.

Inspired by this vague idea, I would now like to make precise the notion
of infinite loop spaces.

I.1.3. Remembering homotopies through loop spaces. I want to
remember the space of ways in which blocks might move past each other.
How? Well, we lost that space by modding out by homotopies. So let’s not
do that:

Definition I.1.3.1 (ΩX, ΩnX.). Let X be a topological space, and
choose a point x0 ∈ X. We let

Ωn(X)

be the space3 of continuous functions

γ : [0, 1]× . . .× [0, 1]→ X

(from the n-dimensional cube to X) sending the boundary of the n-cube
[0, 1]n to the base point x0 ∈ X. We call ΩnX the n-fold based loop space
of X.

When n = 1, the space
ΩX

is the based loop space of X.

Remark I.1.3.2. A more faithful notation might be Ωx0(X) or Ωn
x0
X,

but we often ignore x0 in the notation to avoid clutter.
Note that if X is path-connected, any two choices of x0 yield homotopy

equivalent loop spaces.

The following are elementary, but they will be used over and over again.

Remark I.1.3.3. Note that Ωn
x0
(X) has a natural basepoint given by the

constant map γ0 taking value x0. Using this basepoint, we have Ωn+1
x0

(X) ∼=
Ωγ0(Ω

n
x0
(X)). Or, in less cluttered notation,

Ωn+1X ∼= Ω(ΩnX).

Thus one may interpret the notation Ωn as Ω ◦ . . . ◦ Ω.
Notation I.1.3.4. For any space X, we let π0(X) denote the set of

path-connected components of X.

Example I.1.3.5. In particular π0Ω
n(X) ∼= πn(X,x0). So one can think

of πn(X,x0) as the group we obtain by beginning with a beautiful space
called Ωn

x0
(X) and destroying it by only remembering its connected compo-

nents. Flipping this observation, we think of ΩnX as a space that allows us
to remember how maps out of spheres can be composed.

3This set can be given the compact-open topology. A path in this space from γ to
γ′ is precisely a homotopy between γ and γ′ respecting the basepoints. Even better is to
endow the space with the k-ified topology, to render the topology compactly generated.
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Because π1X is not abelian, we should think of ΩX as not at all abelian.
The two-fold loop space Ω2X is “more abelian,” because we can arrange for
the order of composition to not matter, up to homotopy. As we discussed in
the previous section, the intuition is that ΩnX is “more abelian” the higher
n is, because the space witnessing abelianness is roughly equivalent to Sn−1.

Finally tracing through this line of thought, we arrive at the following
conclusion: Something which behaves like an n-fold loop space for arbitrary
large n is “canonically” abelian, because the space of ways in which we
witness two elements commuting is contractible.

We may at last answer the question of what we mean by an “abelian
group” structure on a space X. To give a space X = X0 a “group struc-
ture,” one can exhibit an equivalence with ΩX1 for some space X1. Then
X0 inherits the loop composition and becomes a group, though not a very
abelian one. To endow this multiplication with abelianness, we can exhibit
an equivalence X0 ≃ ΩX1 ≃ Ω2X2, where the last equivalence is induced by
choosing X1 ≃ ΩX2 and applying Ω. (This ensures that the original group
multiplication inherited from X1 is compatible with the one inherited from
X2.) And so forth. We must specify an infinite chain of equivalences

X0 ≃ . . . ≃ ΩnXn ≃ . . . .

Note that abelianness is now a far cry from being a property of a single
group structure; it is the specification of data.

Remark I.1.3.6. Recall that, when we mod out by homotopy, the set
πn(X,x0) has a single multiplication map. In contrast, there are many
natural maps

ΩnX × ΩnX → ΩnX.

(There is roughly one such map for every way in which one can embed two
cubes into a larger one.) While these choices are all homotopic for n ≥ 2, as
we learned in the previous section, the space of ways to embed cubes into a
bigger cube is itself an interesting space.

Remark I.1.3.7. We have also not discussed associativity. For example,
there is an even more complicated space of ways in which we can embed k
many cubes to realize maps

ΩnX × . . .× ΩnX → ΩnX

where the product is taken k times. The vocabulary of operads is meant
to codify in what sense we can think of coherent algebraic structures (such
as associativity and commutativity). This is of course a preview of a later
lecture. The interested reader can look up “the little n-cubes operad” or
“the En operad.” The space ΩnX is an algebra for this operad.

I.2. Spectra

We have reached the following guess at an “abelian group”-like structure
for spaces:
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Definition I.2.0.1 (Spectra). A spectrum X is the data of

(1) Topological spaces X0, X1, . . . together with chosen points xi ∈ Xi

for each Xi, and
(2) Homotopy equivalences4 Xi

∼−→ ΩXi+1 for every i. Here, ΩXi is the
based loop space taken at the basepoint xi ∈ Xi from above.

Warning I.2.0.2. There is no useful definition of “Ω∞X” for a topo-
logical space X; indeed, if one tried to define such a thing as the space of
maps γ : S∞ → X sending a basepoint of S∞ to x0, this space would be
contractible, and would have no interesting structures. In contrast, the data
defining a spectrum can, in practice, often form a subtle collection.

Let me mention now some notation that can be confusing. In later chap-
ters, we will write Ω∞Y will to denote the space associated to a spectrum
Y . It will turn out that Ω∞Y = Y0, the 0th space in the above sequence.

Remark I.2.0.3. Note that if one begins with a space X0, there may
be many inequivalent ways to produce a spectrum whose 0th space is X0.
For example, even in the case of X0 = Z, while an obvious first choice is
X1 = S1, one could also take X1 = S1×K for any discrete space K with an
abelian group structure; then by choosing a basepoint x1 ∈ X1, we obtain
still that ΩX1 ≃ X0. There are similar ambiguities in choosing Xn for higher
n.

Remark I.2.0.4. In general, most spaces do not arise as X0 of a spec-
trum. One obvious obstruction is whether π1X0 is abelian. This is not the
only one.

Definition I.2.0.5. A morphism of spectra X → Y is the data of con-
tinuous maps

fi : Xi → Yi
respecting basepoints, and of homotopies

Hi : Xi × [0, 1]→ ΩYi+1

rendering the diagram

Xi

��

∼ // ΩXi+1

��
Yi

∼ // ΩYi+1

homotopy commutative.
We let

homSpectra(X,Y )

4It is very important to think of this arrow as pointing in the direction indicated.
Indeed, the data of an arrow in this direction is only equivalent to the data of “an arrow
in the other direction, plus homotopies exhibiting this other arrow as a homotopy inverse.”
Put another way, the space of homotopy inverses to a given map is not contractible; only
the space of homotopy- inverses-equipped-with-data-realizing-their-homotopy-inverseness
is contractible.
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denote the space of maps of spectra.

Remark I.2.0.6. Informally, the data of a map f allows us to conclude
the map f0 : X0 → Y0 is a map of groups (since H0 exhibits it as homotopic
to a map of loop spaces Ωf1). The other homotopy-commutative squares
encode data making the group map respect the abelianness inherited from
being higher loop spaces.

Remark I.2.0.7 (Composition). The astute reader will wonder how to
compose two morphisms of spectra, as each morphism involves data of ho-
motopies. In particular, if a homotopy is parametrized by an interval of the
form [0, 1], do we want a composition of two homotopies to be parametrized
over [0, 2]? One classical work-around is to use the Moore path space model
for concatenating homotopies (by declaring that in general by a homotopy
we mean something parametrized over [0, t] for whatever t ≥ 0).

Another classical work-around is to invoke the language of operads (in
the sense of Peter May), and model spectra as a category over an A∞-
operad. This is the same strategy that allowed one to articulate some of the
“associative up to homotopy” structures enjoyed by loop spaces.

A third work-around, which we will not discuss in detail, is to create
an ∞-category of spectra, where in we replace the data of composition and
coherence by simply declaring what “coherent diagrams” mean for spectra.
This would be my preferred method. It should be said that any of the
previous two methods would indeed make it rather difficult to articulate the
symmetric monoidal structure of smash product.

Even in light of this remark, you should know that a composition of two
maps of spectra, f, f ′ involves the usual composition f ′ ◦f and a concatena-
tion of f ′(H) with H ′. Any two such concatenations yield homotopic data,
so we do not care which you choose. The mistake (or arduous path) would
be to insist on “the” composition. The healthy attitude is to treat any two
reasonable candidates for a particular composition to be acceptable.

Definition I.2.0.8 (Equivalence of spectra). A map f : X → Y is
called an equivalence if there exists a map g : Y → X for which there exists
homotopies fg ∼ idY and gf ∼ idX . (These homotopies are through maps
of spectra; i.e., they are paths in the mapping spaces homSpectra(X,X) and
homSpectra(Y, Y ).)

Remark I.2.0.9. There is an algebraic way to characterize equivalences
by computing the induced map on homotopy groups of spectra, similar to
the classical Whitehead theorem for spaces. See Exercise II.18.

I.3. How do you compute addition?

In principle, the first lecture is over. In the following sections, me answer
some common questions a reader may have. The contents of the following
sections will be assumed in later lectures.
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I motivated a spectrum as like an abelian group for homotopy theo-
rists. So if I exhibit X0 as the 0th space of some spectrum X, what is the
“addition?”

By the homotopy equivalence X0 → ΩX1, I can think of two elements
of X0 as two loops in X1. Concatenate those loops. The resulting loop is
the sum of the two elements.

Of course, everything is up to homotopy. As you know, there are many
possible ways to concatenate two loops (corresponding to the ways in which
I allocate time intervals inside [0, 1], for example) so there isn’t a single well-
defined sum/concatenation. And the concatenated loop may not be in the
image of X0 → ΩX1; but because f0 is a homotopy equivalence, one can
identify points in X0 that deserve to be called the sum up to homotopical
data.

One could think of the other maps Xi → ΩXi+1 as existing purely to
exhibit the “commutativity” data, but of course you can interpret addition
through them as well. The map X0

∼−→ ΩnXn allows you to think of each
point in X0 as some n-sphere in Xn, and you can concatenate/compose
those. Because we also have an equivalence ΩX1 → ΩnXn which is a loop
map, the addition operations in these paragraphs are all equivalent up to
only contractible ambiguities as n→∞.

I.4. Example: The integers

Surely, Z ought to be an abelian group for a homotopy theorist; after
all, that a+b equals b+a is a pretty canonical way to exhibit commutativity
of an operation.

But to fit things into our definition from the previous section, we must
be able to exhibit X0 = Z as an infinite loop space. So can we find a space
X1 so that Z ≃ ΩX1? Then we must also exhibit X1 ≃ ΩX2 for some space
X2, and so forth. One already sees something non-trivial about this.

Example I.4.0.1. The circle S1 is a space whose fundamental group is
Z, and whose higher homotopy groups are zero. (One can see this because
the universal cover of S1 is R, which is contractible, hence has no homotopy
groups; moreover, covering maps induce isomorphisms on all πk for k ≥ 2.)
So our first stab at X1 is S1; indeed, you can try convincing yourself that
ΩS1 is homotopy equivalent to the discrete space (i.e., set) Z, and the map
ΩS1 → Z exhibiting this equivalence is given by the winding number.

But what space has S1 as its space of based loops? Recall from Exer-
cise I.10 that Ω shifts homotopy groups. So to exhibit Z as an infinite loop
space, we need to find spaces Xi such that the ith homotopy group of Xi is
exactly Z, and all higher homotopy groups of Xi are zero. Moreover, let us
demand all lower homotopy groups also vanish so as to minimize the chance
of making non-canonical choices. (See Remark I.2.0.3.)

Such spaces – with only one non-vanishing homotopy group – have a
long history in topology.
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Definition I.4.0.2. An Eilenberg-Maclane space is a topological space
Y whose homotopy groups πn(Y ) are non-zero for at most one value of n.
If πn(Y ) ∼= A ̸= 0, we often denote Y by the symbol

K(A,n).

Remark I.4.0.3. It is common to denote a choice of abelian group by
π rather than by A, so you will often hear in conversation or in writing the
name “K(π, n)” to refer to an Eilenberg-MacLane space.

It is uncommon to use the notationK(0, d) for the (contractible) Eilenberg-
MacLane space, but you would not be excommunicated for doing so.

Remark I.4.0.4 (Existence of Eilenberg-Maclane spaces). If somebody
asks you to construct a chain complex with certain (co)homology groups,
you’d do so easily. Just take a chain complex with zero differential, and
prescribed groups in each degree. One can in fact make free chain com-
plexes with prescribed cohomology – if we assume the cohomology groups
are bounded in some direction, one can easily do so inductively.

Likewise, for a group P1, it is easy to construct a connected space A1

with π1A1
∼= P1; given a generators and relation presentation of P1, one can

simply wedge together a collection of circles, and attach disks to kill off the
required relations.

This produces a space A1 with the desired π1 ∼= P1. But depending
on your presentation, you may have introduced some π2, and in turn some
π3 and so forth. (Recall that, aside from the circle, every sphere admits
higher-dimensional homotopy groups – for example, π3(S

2) ∼= Z.)
Regardless, given an abelian group Pi, we attach i-dimensional spheres

to Ai−1 to generate as necessary, and kill unwanted elements of (or impose
relations on) πi by attaching (i + 1)-dimensional disks. This results in a
space Ai with πi(Ai) ∼= Pi, while the lower-dimensional homotopy groups are
unchanged. We proceed by attaching spheres and killing-disks inductively
on i to obtain a space with the desired homotopy groups.

In particular, this shows we can construct Eilenberg-Maclane spaces (by
setting all but one Pi to equal zero), though after making many arbitrary
choices.

Because of our choices, it is not clear how homotopy equivalent our end
results are. Certainly for arbitrary prescriptions of homotopy groups Pi, we
have no hope for an equivalence. But for Eilenberg-MacLane spaces, we can
guarantee it.

Remark I.4.0.5 (Uniqueness). Fix an Abelian group A and a non-
negative integer n ≥ 0. Two choices of Y ≃ K(A,n) may have differ-
ent homeomorphism types, but a classical theorem states that reasonable
Eilenberg-MacLane spaces are unique up to homotopy equivalence. For ex-
ample, both S1 and C\{0} are examples of K(Z, 1), and these are definitely
not homeomorphic, but they are homotopy equivalent.
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Here is one way to prove they are unique up to homotopy equivalence:
In a category of reasonable spaces, one proves that any Eilenberg-Maclane
space represents the functor sending a (reasonable) space X to the cohomol-
ogy group Hn(X;A). You can prove this not in the category of topological
spaces, but its homotopy category, where hom(X,Y ) is the set of homotopy
classes of continuous maps from X to Y . Then by the Yoneda Lemma,
any two Y, Y ′ representing Hn(−;A) must be isomorphic in the homotopy
category, meaning they are homotopy equivalent.

By uniqueness (up to homotopy equivalence) of Eilenberg-MacLane spaces,
we formally conclude that there exist unique spaces (up to homotopy equiv-
alence) Xn = K(Z, n) and homotopy equivalences such that

Z = X0 ≃ ΩX1 ≃ Ω2X2 ≃ . . . .

Remark I.4.0.6. One can also give concrete models of each Xi. For
example, X1 = S1 and X2 = CP∞, while more generally, one can define
Xn to be the configuration space of finitely many points on Sn labeled by
integers. (When points collide, the integer-labels add, and if a point is
labeled by 0, it may disappear. Sn also has a basepoint into which any
configuration point may disappear.) This last assertion is a consequence of
the Dold-Thom theorem.

At the same time, one can make use of many objects through the functors
they represent (without getting hands dirty with concrete models). The
K(A,n) represent the nth cohomology groups with coefficients in A, so one
can often make use of them without the above models.

So we have finally exhibited the most basic abelian group, the integers,
as an infinite loop space.

In fact, the above shows that for any abelian group A and for any integer
n ≥ 0, the space K(A,n) may be exhibited as the 0th space of a spectrum,
by setting

X0 = K(A,n), X1 = K(A,n+ 1), X2 = K(A,n+ 2), . . . .

Definition I.4.0.7. Fix an abelian group A. Then the spectrum HA
whose ith space is given by K(a, i) is called the Eilenberg-Maclane spectrum
associated to A.

Remark I.4.0.8. An astute reader may have noted that, in principle,
there may be other ways to make Z = X0 into the 0th space of a spectrum.

As an example the space X1 could have been chosen to have non-trivial
π0, and this would not affect the fact that ΩX1 ≃ Z. If one had taken
X1 = Z × K(A, 1) ≃ Z × S1, one could construct a new spectrum with
Xi = K(A, i−1)×K(A, i). The end result is a spectrum with π0 = π−1 = Z,
and we will later see that this is the wedge sum/direct sum HZ⊕HZ[−1].

The spectrum HZ is the unique connective spectrum whose 0th space
is Z. In fact, the Eilenberg-Maclane spectrum HA is the unique spectrum
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whose homotopy groups are trivial except in degree 0, where π0 ∼= A. See
Exercise I.20.

I.5. Homotopy groups and shifts

Now that we have a definition of spectrum, we discuss homotopy groups
and shifts of spectra.

Definition I.5.0.1 (Homotopy groups of a spectrum). Let X be a spec-
trum, so we are given spaces Xi and homotopy equivalences Xi ≃ ΩXi+1

for i ≥ 0. Then the nth homotopy group of X is defined to be

πn(X) := πn+i(Xi)

where if n is negative, the righthand side makes sense so long as n+ i ≥ 0.
For example, π−1(X) is the 0th homotopy group of X1.

Remark I.5.0.2. The data of the weak equivalences give us group iso-
morphisms

πn+i(Xi) ∼= πn(ΩiXi) ∼= πn(X0)

when n ≥ 0. We also have that π−n(X) = π0(Xn).

Definition I.5.0.3 (Connective spectra). A spectrum is called connec-
tive if all its negative homotopy groups vanish.

Example I.5.0.4. Let A be an abelian group. Because we chose/defined
an Eilenberg-Maclane spectrum HA to have Xi ≃ K(A, i), the homotopy
groups are

πn(HA) ∼=

{
A n = 0

0 otherwise.

In particular, the Eilenberg-Maclane spectra associated to abelian groups
are connective.

I.6. Chain complexes (not covered in spoken lecture)

It turns out we can also convert any chain complex into a spectrum. We
will denote this functor from chain complexes to spectra by H, so a chain
complex A is sent to a spectrum HA. (This generalizes the construction
from the previous section, where A was an abelian group.)

Moreover, this construction enjoys the property thatHk(A) ∼= π−k(HA).
That is, cohomology groups of A are given by homotopy groups of HA. Note
that if we were to have no notion of negative homotopy groups, one would
not be happy with HA. After all, if A is the hom complex of two projective
resolutions of some modules, it is only the positive cohomology groups that
recover interesting invariants such as Ext groups.

If A is a chain complex, we can form its shifts A[n] defined by (A[n])i =
An+i, regardless of the sign of n. This shifting has the pleasant feature that
A[1][−1] ≃ A, and that [n] obviously shifts the cohomology groups of A by
n.
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Likewise, spectra have a shift operation. Let X be a spectrum. Let us
observe that our Z≥0-indexed sequence of spaces

X0, X1, . . .

can actually be extended to a Z-indexed sequence

(I.6.1) . . . , X−1, X0, X1, . . . ,

by setting X−i := ΩiX0. Then for any i ∈ Z, we automatically have the
condition Xi ≃ ΩXi+1. (As this comment makes clear, a spectrum in some
sense only cares about the “positive tail” of its sequence of spaces.) At this
point the shift operation is manifest:

Definition I.6.0.1. Let X be a spectrum. Then X[1] is the spectrum
whose ith space is given by (X[1])i = Xi+1. On the other hand, X[−1] is
the spectrum whose ith space is given by (X[−1])i = ΩXi, or by Xi−1 using
the convention from (I.6.1).

If f : X → Y is a map of spectra, we have the obvious induced maps
f [±1] : X[±1]→ Y [±1].

The shift functors indeed shift homotopy groups:

Proposition I.6.0.2. We have natural isomorphisms

πn(X) ∼= πn+1(X[1]) ∼= πn−1(X[−1]).

Remark I.6.0.3. For spectra and for chain complexes, we will later see
that this shift operation is not merely a construction of an operation, but
satisfies a universal property; they are homotopy pushouts and pullbacks
along 0 maps.

Moreover, if H is the functor sending a chain complex A to a spectrum
HA, it turns out H(A[1]) ≃ (HA)[1]. That is, there is a natural shift oper-
ation on spectra, just as there is for chain complexes, and H is compatible
with this shift operation.

I.7. Reading (not covered in spoken lecture): The history of
definitions of spectra

The development of stable homotopy theory – that is, the field of math
studying spectra – is a beautiful example of the non-uniformity of progress.

Here is an analogy I learned from a talk of Mori5. Mathematical invari-
ants are like a cubist painting of the objects we seek to describe – we cannot
see the object itself, but we aggregate facets of it. (See Figure I.7.0.1.)

I think historical attempts at describing spectra captured facets of spec-
tra. But there was difficulty in pinning down a usable and intuitive defi-
nition. This difficulty is a heavy piece of evidence in favor of people who
believe math is about good definitions.

5I heard this specifically at Shigefumi Mori’s talk at the June 2016 Benjamin Peirce
Centennial Conference at Harvard, “Rational Curves on Algebraic Varieties - an encounter
at Harvard and its later development.”
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Figure I.7.0.1. Violin and Candlestick, 1910 by Georges Braque

Even today, a Wikipedia article on spectra will give a definition of a spec-
trum that is what I call a prespectrum in Exercise I.19. Many people believe
that prespectra are a more natural definition – for historical reasons, and
because many geometric examples arise as prespectra. My personal opinion
is that Ω-spectra are spectra, full stop; but let’s not get into arguments here.

Without getting into the history too much, shown in Figure I.7.0.2 is a
page from J. Frank Adams’s “Stable Homotopy Theory,” published in 1964
by Springer-Verlag in the Lecture Notes in Mathematics series, based on
lectures given at UC Berkeley in 1961.
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23 

jnstifiable objects, but they don't exist inside S-theory. 

I DBnt to go ahead and construct a stable category. 

NQ'tov I should warn you the t tb.e pro)er definitions here 

a1"e still a matter for nmch plee.surable arcumentation 

among the ex·)erts. The debate is betl!leen tHO attitudes, 

1rThich I'll personif;.T 2S the tortoise and the hare. The 

hare is an idealist: his preferred position is one of 

elegant and all embracing generality. He wants to build 

a new heaven and a new earth and no half-measures. If he 

had to cunstruct the real numbers he'd begin taking all 

sequences of rationals, a.nd only introduce that tiresome 

condition about convergence when he was absolutely forced 

to. 

The tor"i:ioise, on the other hand, takes a much more 

restrictive view. He says that his modest aim is to make 

a cleaner statement of ).a:1ovm theorems, and he'd like to put 

a lot of restrictions on his stable objects so as to be 

sure that his category has all the good properties he may 

need. Of course, the tortoise tends to put on more restric-

tions than are necessary, but the truth is that the restric-

tions rrive him confidence. 

You can decide which side you're on by contemplating 

the Spanier-1,-lhitehead dual of an EilenberG-NacLane object. 

This is a "coml)lex" with "cells II in all stable dimensions 

from -00 to -n. According to the hare, Eilenberg-

Figure I.7.0.2. A page from J. Frank Adams’s “Stable Homotopy Theory,”
published in 1964 by Springer-Verlag in the Lecture Notes in Mathematics
series, based on lectures given at UC Berkeley in 1961.
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Of course, whether an approach is hare-brained or tortoise-brained is
only subjectively appreciable, and opinions change over time. What feels
abstract and general one day can, with practice, feel like the most concrete
manifestation of an idea.

I will most likely be closer to a hare than a tortoise in these lectures, but
I hope to empower you with enough intuition that you could at least identify
whether a tortoise is headed in the right direction with their constructions.

Here is another quote from Adams, many years later:

“The important thing is to know that there is a good cat-
egory of spectra, and not to insist on any one choice of
details for its construction. In fact there are alternative
ways of setting up the details; they all lead to the good
category, but for some particular application one may have
an advantage over another. Let us keep our options open.”

This quote is from J. Frank Adams’s “Infinite Loop Spaces” (Chapter 1,
Section 3). The book was based on the Hermann Weyl Lectures at the IAS,
given in Spring 1975. The book (part of the orange Annals of Math studies
series published by Princeton University Press) was published in 1978.

You can see that for at least 17 years – even as the problem of building
concrete models of spectra progressed – one felt one should be open-minded
about which models to use in which situations. At the same time, it was
possible to have an opinion that there was “the” good definition (in Adams’s
own quote about keeping options open!).

Let me explain why there is no contradiction here. There are often
different ways of defining a desired category, and these different-looking
ways are often equivalent. Indeed, major theorems are about equivalences
of things that look very different.6 Adams is saying that, depending on the
context, one side of the equivalence may be a more convenient model than
another.

But then the problem arises: How do you characterize this particular
equivalence class? “All models of spectra are equivalent” is a frustrating
statement if we don’t have a universal characterization of spectra. As an
analogy, “every Cauchy sequence of rational numbers converging to e is
equivalent” is so tautological that it borders on meaningless without having
some characterization of e itself that does not depend on a particular choice
of Cauchy sequence to begin with.

My personal opinion is that there is indeed one “good” way to set ev-
erything up, based on formal properties about symmetric monoidal stable
∞-categories: Spectra is the unit in the ∞-category of presentable stable
∞-categories. (This is a fact that must be true regardless of what model of
higher category theory you take.) But this opinion is rooted in dirty work;
so what I present in these lectures is a middle ground that avoids the details

6For example, that DbCoh(P1) is a derived category of quiver representations. Or
that the K theory of finite sets is the sphere spectrum.
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of the set-up. (See Section II.11.) I aim to present concrete models where
they might help the reader, and abstract properties/philosophies where they
help in justifying concrete models or in advancing the theory.

Remark I.7.0.3. There are definitions of spectra like diagram spectra
and symmetric spectra, where a spectrum is not only defined as some collec-
tion of spaces, but this collection is indexed by objects with more and more
symmetries, and often with actions of these symmetries. Let me give one
motivation as to why such things were created: At the end of the day, it was
all to create a good model of the smash product (see next lecture). It is an
interesting phenomenon. To encapsulate the idea of tensoring objects in a
nice way, these models shoved the symmetries and structures of tensor prod-
ucts into definitions of the objects themselves. This certainly resolved some
issues, but one cannot help but wonder if the desire for a smash product in
the end obfuscated the definitions of the objects themselves.

Later in these lectures when I talk about operads, we will again encounter
a shortcoming – the issues of coherences are shoved into particular regions
of the definitions, but like attempts to smoothen an infinite and wrinkled
carpet, one only serves to transport the bumps to another place. What we
need is a robust framework for dealing with homotopy coherences to begin
with.

So in fact, what has revolutionized the field in the last 16 years is not
a new definition of spectra, but a new model for higher category theory –
that of ∞-categories, due to Joyal and Lurie.

Remark I.7.0.4. Just one more remark about this, again by historical
analogy. The old definition of manifold was as a subset of Euclidean space
satisfying some properties (smooth and locally Euclidean).7 This is a frus-
trating definition because S1 with its standard embedding is no different
from S1 with another embedding, yet anytime someone comes up with their
own preferred model of the circle, you have to write down a darn diffeomor-
phism between them.

A newer definition defines a manifold as a space with some universal
choice of atlas. This notion of “maximal atlas” (and perhaps, the underlying
idea of transition charts) was a genuinely useful idea, and we see in hindsight
how the old definition fits in: A choice of embedding gives a choice of atlas
of a manifold by intersecting the manifold with open balls of the Euclidean
space in which the manifold is embedded.

It is an intellectual leap to first think of something as defined using
equations, then to think of an abstract way to define a smooth structure via
a maximal atlas. Likewise, it is a leap to first think of the category of spectra
as defined by specifying what objects and morphisms are, then to think of
spectra as characterized by a universal property among all ∞-categories.

7Indeed, if you read some old writings of even the greats, they define a manifold as
an object defined by a collection of smooth and transverse equations in Rn. You can see
the analogy with affine varieties.
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Regardless of this beautiful story, I’ve in parallel tried to present first
things first. So let’s keep getting a feel not just for universal properties (like
Theorem II.6.0.1), but what these universal things are actually supposed to
be.

I.8. Abelian groups in spaces (not covered in lecture)

I should warn you that there are plenty of well-respected topologists
who would reject my philosophy that “spectra are abelian groups.” In fact,
many people think of the homotopical notion of abelian groups in spaces as
“spectra with vanishing negative homotopy groups” (i.e., connective spec-
tra).

There is a sense in which both philosophies are correct. For example, if
you formulate what you mean by an “abelian group object in the∞-category
of spaces,” you will indeed come upon the answer of spectra with vanishing
negative homotopy groups.

But this is not what I’ve formulated. I did not ask, at the outset, what
the abelian group objects are in the ∞-category of spaces. I asked what
I would invent if I followed my nose, pursuing what it means to impose a
homotopical “abelian group structure” on a space. I inevitably arrived at
spectra, and no intuition about abelian groups demanded along the way that
“the nth space Xn should have no homotopy groups in degrees ≤ n− 1.”

The distinction between these two perspectives is almost the point: The
notion of “abelian group object” depends on a classical notion of abelian
group. The approach in these notes arrives at a new and natural notion,
suited for spaces, without relying on this classical notion.

Finally, let me also give a big warning. There is a difference between
an abelian group in the ∞-category of spaces, and an abelian group in the
category of spaces. (Read that again if you need to; see also Exercise II.20.)
The latter, of course, are just topological abelian groups, and one can prove
using the Dold-Kan correspondence that such things (when considered as
spectra) are always direct products of Eilenberg-MacLane spectra. One can
further prove, then, that this actually just recovers the homotopy theory of
chain complexes over the integers. I promise that the theory of spectra is
far more intricate than the theory of chain complexes.
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I.9. Suspension and based loops

(a) Let X,Y, Z be sets. Exhibit a bijection

hom(X × Y, Z) ∼= hom(X,hom(Y,Z))

where hom stands for the set of functions, and X×Y is the usual direct
product.

(b) Suppose you have functions f : X → X ′, g : Y → Y ′, h : Z ′ → Z. Show
that the diagram below commutes:

hom(X × Y,Z)
∼= // hom(X,hom(Y,Z))

hom(X ′ × Y ′, Z ′)
∼= //

(f∗×g∗)h∗

OO

hom(X ′,hom(Y ′, Z ′))

(f∗×g∗)h∗

OO

(c) Now suppose that X,Y, Z are pointed sets, so we have chosen elements
x0, y0, z0 in X,Y, Z respectively. Exhibit a bijection

hom∗(X ∧ Y,Z) ∼= hom∗(X,hom∗(Y,Z))

where now hom∗ stands for functions of pointed sets. (A function is
pointed it if respects the chosen base points.) This is the “tensor hom”
adjunction for pointed spaces, and ∧ plays the role of tensor product.
Concretely, the functor −∧Y is a left adjoint to the functor hom∗(Y,−).

Remark I.9.0.1. Now suppose X,Y, Z are “nice” spaces with nice
choses of basepoint. It is a fact that one can put a nice topology on
the space of continuous functions between nice spaces so that all of
the above bijections are homeomorphisms between mapping spaces. (A
thorough discussion would involve the compact-open topology on hom-
spaces, well-pointedness, and the k-ification of direct product of two
spaces.)

(d) Now letting Y = S1, and taking X,Z to be nice spaces with nice base-
points, exhibit a natural homeomorphism

(I.9.1) hom∗(ΣX,Z) ∼= hom∗(X,ΩZ).

This is the suspension-loops adjunction. It literally states that a (pointed)
map from the (reduced) suspension of X to Z should be thought of as
a family of loops in Z indexed by X, and vice versa.

37
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Remark I.9.0.2. Now-a-days, most people utilizing spectra do not
care that (I.9.1) is a homeomorphism, and we only care that it is a
homotopy equivalence. Indeed, though we gave point-set models of Σ
and Ω, there are other ways to characterize Σ and Ω that only preserve
these mapping spaces up to homotopy equivalence.

I.10. Based loops shift πn, but not invertibly.

(a) For any pointed space X, and for any integer k ≥ 1, prove we have a
natural isomorphism of homotopy groups

πkX ∼= πk−1ΩX.

Remark I.10.0.1. That is, the Ω operation “shifts” homotopy groups.
This is similar to the way that the shift operation for chain complexes
shifts homology groups, with the key difference that Ω is not invertible.

(b) Let X be a topological space. Show that ΩΣΩΣX and Ω2Σ2X are not
homotopy equivalent. So, (ΩΣ)k and ΩkΣk are not equivalent functors.

(Hint: Try X = S0. It may help to know that S2 has at least some
πk, k ≥ 3 which is non-zero. For example, π3(S

2) ∼= Z. It may also help
to know that the universal cover of a graph – i.e., of a 1-dimensional
CW complex – is contractible, or that graphs have no higher homotopy
groups.)

I.11. Composing loops versus pinching circles

We started off the exploration of “groups in homotopy theory” by observ-
ing that ΩX looks like a group – concatenating loops is the group operation,
and up to homotopy, every loop has an inverse. Writing

ΩX = hom∗(S
1, X)

as the space of pointed continuous maps from the circle to X, one might
wonder if the group structure on ΩX arises from another structure on S1

itself.

(1) Given two pointed spaces A and B, their wedge sum A∨B is defined
to be

A ∨B := (A
∐

B)/(a0 ∼ b0).

In words, the wedge sum is the union A∪B, where A is glued to B
along the basepoints. Exhibit a natural homeomorphism of pointed
mapping spaces

hom∗(A ∨B,C) ∼= hom∗(A,C)× hom∗(B,C).

(Categorically, this says that A∨B is the coproduct in the category
of pointed spaces. In words, to give a continuous pointed map from
A∨B is the same as giving two continuous pointed maps – one from
A, and another from B.)
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(2) For any pointed space W , consider its reduced suspension ΣW =
S1 ∧W . It turns out there exists a natural “pinch” map

ΣW → ΣW ∨ ΣW

where the target is the wedge sum. In light of the previous exercise,
we thus obtain maps

hom∗(ΣW,X)× hom∗(ΣW,X)→ hom∗(ΣW,X).

By considering the case W = S1, convince yourself that there is
actually an interval’s worth of pinch maps (roughly, the interval’s
worth of loop compositions) inducing the composition maps of ΩX.

(3) Why do you expect – for anyW – the space hom∗(ΣW,X) to have a
group structure? (You may identify this space with an appropriate
based loop space, if you like.)

(4) Just to verify that your pinch maps are correct, verify that each
pinch map has the effect

H̃k(ΣW )→ H̃k(ΣW )⊕ H̃k(ΣW ), A 7→ A⊕A

on reduced homology.

I.12. Smash product for sets and spaces

I.12.1. Free and forget (for abelian groups). (This may be
helpful for next lecture). Let X be a set. We let ZX denote the free
abelian group generated by X.

Remark I.12.1.1. You can concretely model ZX as the direct sum
⊕XZ = Z⊕X of copies of integers, each summand indexed by an element
of X. Let me remind you that if X is infinite, then ⊕XZ is the set of
X-tuples of integers, where only finitely many elements of the tuple are
non-zero. Equivalently, Z⊕X is the set of all functions from X to Z for
which all but finitely many elements of X are sent to 0.

Note that if f : X → X ′ is any function, one has an induced map of
abelian groups (i.e., a group homomorphism) Zf : ZX → ZX ′.

(a) Letting Y be an abelian group, exhibit an isomorphism of abelian groups

homAb(ZX,Y ) ∼= homSets(X,Y ).

On the left, we have the collection of abelian group homomorphisms
from ZX to Y , while on the right, we have the collection of functions
from X to the group Y .

(b) Let f : X → X ′ be any function, and g : Y → Y ′ a map of abelian
groups (i.e., a group homomorphism). Show that your isomorphism
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from the previous problem fits into a commutative diagram

homAb(ZX,Y ′)
∼= // homSets(X,Y ′)

homAb(ZX ′, Y )
∼= //

(Zf)∗g∗

OO

homSets(X
′, Y ).

f∗g∗

OO

Remark I.12.1.2. The commutativity of this diagram is what makes
the isomorphisms from the previous problem natural. (In math gener-
ally, the word natural is often used without precise meaning, but in
category theory, the word “natural” is used for relations that are com-
patible with pre/post composition with functions. This is the sense in
which we use the term “natural transformation” between two functors.)

Remark I.12.1.3. You have just exhibited the free-forget adjunction
for abelian groups. Here, the functor sending a set X to the abelian
group ZX is the left adjoint, and the functor sending an abelian group
Y to its underlying set (“forgetting” the abelian group structure) is the
right adjoint.

I.12.2. Smash product of sets. This exercise is meant to motivate
the definition of smash product of spaces (by adopting the principle that
spectra are like abelian groups, and that smash product of spectra is like
tensor product).

(a) Exhibit an isomorphism ZX ⊗Z ZY → Z(X × Y ).
(Hint: Recall that the tensor product A⊗ZB is universal for bilinear

maps out of A×B – that is, an abelian group homomorphism q : A⊗Z
B → C is the same thing as a function f : A × B → C satisfying
f(a + a′, b) = f(a, b) + f(a′, b) and f(a, b + b′) = f(a, b) + f(a, b′). If
you can prove that abelian group homomorphisms Z(X × Y ) → C are
in bijection with such bilinear functions, and you can prove that your
bijection is natural in the C variable, you have proven that ZX ⊗Z ZY
and Z(X × Y ) are isomorphic; this is a consequence of the Yoneda
Lemma.)

(You can alternatively ignore the previous hint if you have a favorite
model for the tensor product, but the hint gives you a model-less way
to think about how to prove two things are isomorphic.)

There is of course a forgetful functor from the category of groups
to the category of sets, where any group is sent to its underlying set.
However, group homomorphisms preserve particular elements (identity
elements) so it is natural to try to understand a forgetful functor not to
the category of sets, but to the category of pointed sets.

So suppose that (X,x0) is a pointed set, meaning we have chosen
an element x0 ∈ X. A map of pointed sets is a function f : X → Y
for which f(x0) = y0. Given a pointed set (X,x0), one can define an
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abelian group

Free∗(X,x0) := ZX/Zx0.

That is, Free∗(X,x0) is obtained by quotienting the free Abelian group
on X by the free subgroup generated by x0.

(b) Verify that there is a free-forget adjunction between the category of
groups and the category of pointed sets. (You can do this with as
much detail as you want, but at the very least you should convince
yourself that there is a natural bijection between the collection of abelian
group homs from Free∗(X,x0) to an abelian group A, and the collection
of basepoint-preserving functions from (X,x0) to (A, 0) where 0 is the
identity element of A.)

(c) Let (X,x0) and (Y, y0) be pointed sets. Define (i.e., reverse-engineer) a
new pointed set

(X,x0)⊠ (Y, y0)

so that you have a natural isomorphism

Free∗(X,x0)⊗Z Free∗(Y, y0) ∼= Free∗((X,x0)⊠ (Y, y0)).

(d) Compare your definition of ⊠ to the definition of smash product of
pointed spaces.

I.13. Basic smash products of spaces

Let X and Y be two spaces with chosen basepoints x0, y0, respectively.
Recall that the smash product of X with Y is denoted X ∧Y , and is defined
as the following quotient space:

X ∧ Y := (X × Y )/
(
{x0} × Y

⋃
X × {y0}

)
We take the image of {x0}×Y

⋃
X×{y0} is taken as the basepoint of X∧Y ,

so that X ∧ Y is not just a space, but a pointed space.

(a) Let X be a pointed space. Show that S0 ∧X is homeomorphic to X as
a pointed space.

(b) Let X be a pointed space and let ∗ be the one-point space. Compute
∗ ∧X.

(c) If you believe in the metaphor between smash of spectra and tensor of
abelian groups, what does this say about Σ∞(∗)∧Σ∞X? What abelian
group should you interpret Σ∞∗ to behave like?

(d) Let X be a pointed space and let ΣX be its reduced suspension. Show
that S1 ∧X ∼= ΣX. More generally, prove that Sn ∧X ∼= ΣnX.

(e) Show that Sn ∧ Sm ∼= Sn+m.
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I.14. S0 is a commutative ring

Let C be a category with a symmetric monoidal structure⊠. For short we
will write C⊠ a sym Recall that part of the definition of symmetric monoidal
structure guarantees the existence of an object 1 (called the unit) and the
existence of natural isomorphisms

σ : A⊠B ∼= B ⊠A, A⊠ (B ⊠ C) ∼= (A⊠B)⊠ C, ϵ : 1⊠A ∼= A,

and so forth. (We didn’t write down all of the natural isomorphisms and
their requirements.)

Then a commutative algebra or commutative monoid in C⊠ is an object
A, equipped with maps

m : A⊠A→ A, u : 1→ A

so that the following diagrams commute:

A⊠A
m //

σ
��

A

A⊠A

m

;; , 1⊠A

u⊠idA
��

ϵ // A

A⊠A

m

;; , A⊠A⊠A
idA ⊠m //

m⊠idA
��

A⊠A

m
��

A⊠A
m // A

.

(a) If 1 is the unit of the symmetric monoidal structure, prove that 1 is a
commutative algebra object.

(b) Write out some of the symmetric monoidal structure maps when C = Ab
is the category of abelian groups and⊠ = ⊗Z. (The unit object 1 is given
by Z.) Check that the commutative algebra structure you observed in
the previous problem agrees with the usual multiplication of integers.
(This is buried in the definition of the isomorphism Z⊗ Z ∼= Z.)

(c) What is the commutative algebra structure on S0 in the category of
pointed topological spaces (with ⊠ given by the smash product)? It
should be rather silly.

(d) Formulate what one should mean by a map of commutative algebras in
C⊠. Show that if A is a commutative algebra, then the map u : 1 → A
is a map of commutative algebras.
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I.15. Homotopy groups of spectra

Let X be a spectrum. Recall this means X is the data of pointed spaces
Xi for i ≥ 0, along with homotopy equivalences Xi

∼−→ ΩXi+1 for all i ≥ 0.
For any integer i ∈ Z, we define the ith homotopy group of X to be

πi(X) := πi−k(Xk)

(a) Show that the definition of πi(X) is well-defined up to specified isomor-
phism of groups (implicitly, we are taking k ≥ i in the righthand side).
Note this involves checking that the righthand side of the definition is
independent of k (for k ≥ i).

(b) If you know a definition of the sphere spectrum S, show that π0(S) ∼= Z.
Alternatively, show that π0(Ω

kΣkS0) is isomorphic to the integers.
(c) (*) It turns out π1(S) ∼= Z/2Z. Proving this usually requires the Freuden-

thal suspension theorem and a computation of π4(S
3). Exercise for the

curious: Look up a proof that π1(S) ∼= Z/2Z.

I.16. Shifts and loops

It is clear from the definitions that there is a “shift” operation one can
perform on spectra. That is, if the spectrum X is specified by the data
fi : Xi → ΩXi+1 for i ≥ 0, one can define two new spectra X[1] and X[−1]
as follows:

X[1]i := Xi+1, X[−1]i := Xi−1

where we follow the convention that X−1 = ΩX0.

(a) Exhibit homotopy equivalences

homSpectra(X[−1], Y [−1]) ≃ homSpectra(X,Y ) ≃ homSpectra(X[1], Y [1]).

Remark I.16.0.1. I’ve been dodgy about what we mean by compo-
sition of maps of spectra, but I hope this convinces you that the shift
operation is an equivalence from Spectra to Spectra. You should think
of this like the shift operation for chain complexes.

(b) Show that [−1] is obtained by applying Ω to each space of a spectrum.

Remark I.16.0.2. For this reason, we often abuse notation and write

ΩX := X[−1].
43
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Indeed, writing ΩX instead of X[−1] is often less confusing. The shift
notation is notoriously confusing for people who switch between homo-
logical and cohomological conventions.

On the other hand, one must always be aware of whether we write
ΩX for X a spectrum, or X a pointed space.

(c) For any spectrum X, convince yourself that ΩX is the homotopy pull-
back of the diagram

∗

��
∗ // X.

In other words, convince yourself that for any spectrum A, a homotopy
from the zero map A → ∗ → X to itself is the same thing as a single
map from A to ΩX. (If you have not seen this idea before for spaces,
you should do this exercise when A and X are spaces.)

Remark I.16.0.3. Here’s a puzzle: The shift operation is obviously
invertible for spectra. You can undo a shift of [1] by shifting [−1]. But
Ω certainly was not invertible for spaces.

As mentioned already, spectra behave much more like chain com-
plexes – shifts are invertible. This is an artifact of stability in the cate-
gorical sense, which we won’t be able to discuss in these notes.

(d) Compute the homotopy groups of X[1] and X[−1] in terms of the ho-
motopy groups of X.

I.17. Spectra are enriched over themselves

We won’t prove the claim in the title of this exercise, but we will at least
convince you that for any two spectra X and Y , the space homSpectra(X,Y )
is actually the 0th space of a spectrum.

(a) Let 0 denote the “zero spectrum,” given by the spectrum whose ith space
is a one-point space. (Any spectrum whose ith space is contractible is
equivalent to the, and hence also called a, zero spectrum.) Show that
there maps of spectra X → 0 and 0→ X – in fact, show that the space
of maps homSpectra(X, 0) and homSpectra(0, X) are contractible.

(b) Conclude that given any two spectra X and Y , there exists a map X →
Y factoring through 0. We will call this map (and any map homotopic
to it) a zero map. The zero map renders the space of maps of spectra
homSpectra(X,Y ) a pointed space.

(c) Using Exercise I.16, exhibit a homotopy equivalence

homSpectra(X,Y ) ≃ ΩhomSpectra(X,Y [1]).

(d) Rinse and repeat to conclude that homSpectra(X,Y ) is the zeroth space
of a spectrum.
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Remark I.17.0.1. You can think of this as analogous to two classical
facts: The set of abelian group homomorphisms from A to B is itself
an abelian group, or the collection of chain maps between two chain
complexes can be enriched to be part of a chain complex of morphisms.
A pithy way to capture this is to say that the category of abelian groups,
of chain complexes, and of spectra are enriched over themselves.

I.18. Some basic examples of spaces (not) arising from spectra

For each of the following spaces, prove whether the space does, or cannot,
arise as the 0th space of a spectrum.

(1) A circle.
(2) A direct product of n circles.
(3) A direct product of a circle with CP∞.
(4) The wedge of k circles where k ≥ 2.
(5) A discrete space with 5 elements.
(6) A compact Riemann surface of genus g ≥ 2.

I.19. Prespectra

Definition I.19.0.1. A prespectrum is the data of (i) a pointed space
Xi for every i ≥ 0, and (ii) a continuous map ΣXi → Xi+1 for every i ≥ 0.

Example I.19.0.2. LetX0 be any pointed space, and declareXi = ΣiXi.
By considering the identity maps ΣXi → Xi+1, we see that any pointed
space X0 defines a prespectrum.

A fancier example is to consider any vector bundle E → B, and let Xi

be the Thom space of the bundle E ⊕ Rn over B. (Here, Rn is the trivial
n-dimensional bundle over B.) This recovers the previous example when E
is the trivial zero-dimensional vector bundle over B = X0.

Remark I.19.0.3. The Thom space of a vector bundle E can be modeled
as the one-point compactification of E if B is a nice space; alternatively one
may choose a metric on E, and take the quotient of the unit disk bundle of E
by the unit sphere bundle of E. It is an exercise to see that the Thom space
Th(E⊕Rn) is homeomorphic to ΣnTh(E). Indeed, that there were so many
natural examples of such structures often led to many clunky definitions in
the early history of spectra (like prespectra, and sometimes prespectra where
all the maps ΣXi → Xi+1 were demanded to be homeomorphisms).

Given the proliferation of models, I should say that one’s preferences
often emerged not only out of which examples were natural, but also maps
of spectra, and smash products of spectra, are.

I.19.1. From prespectra to spectra.

Remark I.19.1.1. Note that by adjunction, every prespectrum gives rise
to a sequence of maps Xi → ΩXi+1 for every i ≥ 0, but these maps need
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not be homotopy equivalences. Regardless, by applying Ωi to these maps,
we obtain a sequence of maps

X0 → . . .→ ΩiXi → Ωi+1Xi+1 → . . . .

In other words, a pre-spectrum is precisely data that allows us to write down
an “increasing sequence” – of a space X0, into a group ΩX1, into a more
commutative group Ω2X2 (where this inclusion respects the group structure
of X1 because it is a map of loop spaces), into a more commutative group
Ω3X3 (which respects the two-fold loop-space structure), and so forth. Nat-
urally, the “union” of these spaces – that is, the colimit, taken appropriately
– exhibits a space where we know how to multiply any two of its elements,
and in a way as commutative as we like. This is what we do now:

Definition I.19.1.2 (The spectrum associated to a prespectrum). Fix
a prespectrum X. Define a sequence of spaces Yi, i ≥ 0, by declaring

Yi = colim
(
Xi → . . .→ ΩkXi+k → Ωk+1Xi+k+1 → . . .

)
Here, the maps ΩkXi+k → Ωk+1Xi+k+1 are obtained by applying Ωk to the
map in Remark I.19.1.1.

Remark I.19.1.3. Technically, this colimit should be a homotopy col-
imit, so one could use a mapping telescope construction to define Yi; al-
ternatively, the homotopy colimit can be modeled as an honest union if
we demand that every map ΩiXi → Ωi+1Xi+1 is a nice inclusion (more
precisely, a cofibration). If you are not familiar with homotopy colimits, I
encourage you to ignore these details, and I encourage you to think of every
colimit of a sequence as above as simply an increasing union anyway.

(a) Prove that the collection {Yi → ΩYi+1} is indeed a spectrum.
(Hint: By definition of the topology on an increasing union, and

because S1 is compact, a map from S1 to an increasing union factors
through a finite stage.)

(b) Maps of pre-spectra are slightly clunky to define, but an example of a
map of prespectra is obtained by taking a collection of maps gi : Xi → X ′

i
for which Σgi and gi+1 are compatible in the obvious way. Show that
such a collection gives rise to a map of spectra Y → Y ′.

Warning I.19.1.4 (Conflicting terms). A prespectrum is sometimes called
a suspension spectrum in the literature. This is confusing because not ev-
ery prespectrum is Σ∞ of some space; and in our lectures, we reserve the
term suspension spectrum for spectra that are equivalent to Σ∞X for some
pointed space X.

A prespectrum is also just called a spectrum in some older literature.
This is also confusing and conflicts with the terminology in our course.
Historically, the first examples of spectra really did look like prespectra:
The sphere, Thom spectra, et cetera.
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And, in some literature, what we call a spectrum is sometimes called an
Omega-spectrum, or Ω-spectrum.

The proliferation of terminology is confusing, but it’s not purely the
fault of mathematicians. Spectra showed up in different contexts and looked
slightly different in each context. See Section I.7.

I.20. Uniqueness of Eilenberg-MacLane spectra

Fix an abelian group A.

(a) Show that the space of homotopy autoequivalences of the Eilenberg-
MacLane space K(A,n) has π0 given by Aut(A), the group of abelian
group automorphisms of A. (Hint: There is an obvious map in one
direction, given by πn. In the other direction, you could take a CW
model to create a map on the n-cells of K(A,n) corresponding to the
automorphism of A using a presentation of A; argue – using obstruction
theory – that this extends to map from all of K(A,n). Alternatively,
you can use the well-known fact thatK(A,n) represents nth cohomology
with coefficients in A.)

(b) Show that any two spectra with π0 ∼= A as an abelian group and πi ∼= 0
for i ̸= 0 are equivalent. (Hint: The constituent spaces Xi for such
a spectrum are determined up to homotopy equivalence, so the only
ambiguity is in the maps fi : Xi

∼−→ ΩXi+1. Using the previous part,
you can classify all such fi up to homotopy; now write a map to your
favorite Eilenberg-Maclane spectrum accordingly.)
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LECTURE II

Smash product and free-forget

1

We saw in the last lecture the definition of spectra (Definition I.2.0.1). As
advertised then, you should think of a spectrum like an abelian group, with
the bonus that there is inherently topology involved. (For example, there is
a notion of homotopy groups for spectra; and if you did the exercises, there
are even notions of homotopy groups πn with n negative.)

Roughly, spectra are “additive” objects, just as abelian groups are. But
to work with categories or with rings, we need to know how to multiply.
And to talk about multiplication or multilinear maps, the construction of
tensor products is highly convenient. (A bilinear map A × B → C is the
same thing as a linear map A⊗Z B → C.)

In this lecture, we will give a philosophical way to think about the “ten-
sor product for spectra.” This tensor product is called the smash product.
(Yes, this is the same name as the smash product for spaces; but we will
denote the operation for spectra by ⊗, and for spaces by ∧.)

My favorite way to motivate the smash product is to again think about
the analogy to abelian groups, where we can understand the tensor product
of abelian groups very conveniently by way of the free-forget adjunction. So
we will begin there.

II.1. Free-forget for abelian groups

Recall that to any set X, one has the notion of the free abelian group
ZX generated by X. This is an abelian group formed by taking the direct
sum of Z “X many times.” Naturally, any function X → Y gives rise to a
map of abelian groups ZX → ZY .

Conversely, given any abelian group A, you can forget the group struc-
ture and just remember the underlying set of A.

A convenient way to encapsulate these operations is as follows: the “free”
abelian group operation is a functor from the category of sets to the category
of abelian groups

Free : Sets // Ab

1Note. This lecture is nearly identical to the fifth lecture I gave at the MSRI lecture
series on spectra in Spring 2019 (during the Derived Algebraic Geometry program). In the
present notes, I have added more background on the classical free-forget adjunctions.

49
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and the “forget” operation is a functor from the category of abelian groups
to the category of sets

Sets Ab : Forgetoo

Moreover, there is a natural bijection between the set of functions from X
to A, and the set of (abelian) group homomorphisms from ZX to A:

homAb(ZX,A) ∼= homSets(X,A).

Using different notation, you might also write the above as:

(II.1.1) homAb(Free(X), A) ∼= homSets(X,Forget(A)).

(Concretely: To know a map from ZX to A is to know what the map does
on a basis for ZX, and the set X is a natural basis.) We say that the free
functor is the left adjoint to the forget functor, and that forget is the right
adjoint to the free functor.

Free : Sets
..
Ab : Forgetnn

This adjunction is called the free-forget adjunction.

Remark II.1.0.1 (Adjunctions, informally). Not everybody in the au-
dience is familiar with category theory, so let me just say that “how many
functions are there from U to V ” is like2 a“pairing” or a not-symmetric “in-
ner product” on the collection of all objects in a category. Concretely, given
two objects U and V , one can output a set (not a number) called hom(U, V ).

If L and R were linear maps between inner product spaces, we would
say R is an adjoint to L if ⟨Lu, v⟩ = ⟨u,Rv⟩ for every u and v in the
inner product spaces. Whether L is placed on the left, and R on the right,
is of course important in the setting of infinite-dimensional vector spaces.
Likewise, that Free is on the left, and Forget is on the right, is important
in (II.1.1).

Just as adjoints are ubiquitous and important throughout linear algebra
and functional analysis, adjunctions3 are ubiquitous in most mathematics
with useful structures.

But there is something slightly unnatural about the forgetful functor.
The underlying set of an abelian group always has a distinguished element
called the identity, and any group homomorphism respects this. There is
accordingly an adjunction

Free∗ : Sets∗
..
Ab : Forget∗nn

where Sets∗ denotes the category of pointed sets. (Objects are sets S together
with a chosen element s0, and morphisms are functions S → S′ sending s0

2Let me emphasize that “like” is important here; the following is an analogy, not an
example. The analogy does, however, become more accurate if your category has some
linear structure and one passes to its K theory.

3“Adjunction” is the category-theoretic noun for a pair of adjoint functors.
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to s′0.) What Free∗ does is send a pointed set S to a free abelian group
generated by S, modulo the copy of Z generated by s0:

Free∗(S) := ZS/Z{s0}.
Informally, the basepoint s0 “becomes” the unit of the abelian group. The
free-forget adjunction from before in fact factors by the (Free∗,Forget∗) ad-
junction preceded by an adjunction whose left adjoint sends a set S to a
new set S+; a basepoint is simply appended to the original set.

II.2. Free-forget and tensor products

Moreover, Free sends direct products of sets to tensor products (over Z)
of abelian groups; to be more precise, one can give Free the structure of a
symmetric monoidal functor sending × to ⊗Z.

Remark II.2.0.1 (Symmetric monoidal stuff). Let me say briefly what
a symmetric monoidal structure on a category, and symmetric monoidal
structure on a functor, are. You can skip this whole remark if you are
already familiar with these notions.

A monoidal structure on a category, roughly speaking, tells you how to
take two objects and output a third. Just as a product is extra structure on
a set, a monoidal structure is extra structure on a category. And just as a
product on a set is a map X ×X → X, a monoidal structure on a category
contains data of a functor C × C → C. Examples include ⊗Z for abelian
groups. Another monoidal strcuture is ⊕ for abelian groups. A key point is
that a monoidal structure also comes equipped with natural isomorphisms
A ⊗ (B ⊗ C) ∼= (A ⊗ B) ⊗ C; this is a categorical version of “associativity
up to homotopy” (note that the isomorphism is not an equality; this datum
captures the idea of “associativity up to natural isomorphism”). One also
usually supplies the data of a unit – that is, an object 1 along with natural
isomorphisms 1⊗X ∼= X ∼= X ⊗ 1.4

Given a functor F from sets (with direct product) to abelian groups
(with ⊗Z), a monoidal structure on F is a bunch of data, the most intuitive
of which are equivalences F (X × Y ) ∼= F (X) ⊗Z F (Y ) for every pair of
objects X,Y . Note again this is a new collection of isomorphisms one has
to specify on top of the functor F .5 Whether composition is respected is
not some property of F ; it is extra structure one puts on F . A monoidal
functor must also preserve the unit up to natural isomorphism.

The adjective symmetric in all this means one also provides data of
natural swap isomorphisms. For example, to make a monoidal category a
symmetric monoidal category, we provide data of natural isomorphisms X⊗

4A subtle point is that if a unit exists, the unit and the natural isomorphisms are
actually uniquely determined up to natural isomorphism, but it is often polite to provide
the data of unit anyway.

5This is analogous to defining a map of “groups” in spaces f : ΩX → ΩY not as just
some continuous map, but a continuous map together with a homotopy f ∼ Ωg to a map
known to be a map of the form Ωg.
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Y ∼= Y ⊗X, along with compatibilities of this “commutative up to natural
isomorphism” structure with the “associative up to natural isomorphism”
structure.6 Counterintuitively7, once a functor is a monoidal functor between
symmetric monoidal categories, the monoidal functor requires no additional
structure to be considered symmetric.

You should think of a monoidal functor as like a map between monoids,
while a symmetric monoidal functor is like a map between commutative
monoids. A key fact we’ll use over and over again is that a symmetric
monoidal functor takes commutative objects in the domain category to com-
mutative objects in the codomain category.

There is a natural symmetric monoidal structure on Sets∗ that allows
for Free∗ to become symmetric monoidal, and that is the smash product on
pointed sets. Given two pointed sets S and T , the smash product is defined
to be

(II.2.1) S ∧ T = (S × T )/(S × {t0} ∪ {s0} × T ).

The reader can (and should) check easily that Free∗(S ∧ T ) ∼= Free∗(S) ⊗Z
Free∗(T ).

Remark II.2.0.2. The smash product for spaces can seem unmotivated
at first, but the smash product of spaces has the exact same formula as (II.2.1).
So the smash product of spaces obviously generalizes the smash product for
sets, and you can see why somebody interested in a topological version of
abelian groups might start considering it.

We begin in this chapter a study of the analogue for spectra. Rather
than take a pointed set S and produce a free abelian group, we will take a
pointed space X and produce a spectrum Σ∞X, which one can informally
think of as the “free spectrum” generated by X. The analogue of the free-
forget adjunction will be denoted

Σ∞ : Spaces∗ ⇐⇒ Spectra : Ω∞

6A subtle point is that one must also demand that the composition of the swap
isomorphisms X⊗Y → Y ⊗X → X⊗Y be the identity map of X⊗Y ; otherwise one gets
a braided monoidal category; the swap isomorphism encodes a nontrivial monodromy, if
you like.

7This is an accident about the fact that categories only have sets of morphisms; for a
category with spaces of morphisms, one should provide compatibilities between the swap
maps; that is, a homotopy making the following diagram commute:

F (X ⊗ Y )
F (≃) //

≃

��

F (Y ×X)

≃

��
F (X)⊗ F (Y )

≃ // F (Y )⊗ F (X).
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where the “forgetful” right adjoint will be notated by the popular Ω∞ nota-
tion. The forgetful functor is quite concrete: It sends a spectrum to its 0th
space.

Moreover, I assert here without proof that Spectra has a symmetric
monoidal structure, which historically is also called “smash product;” we
will denote this monoidal structure by any of the following symbols: ⊗ or
⊗S. Other works denote this by ∧, which is the same symbol one uses for
smash product of sets and spaces. For an overview of one way to set up the
smash product, see Section II.11.

For us, and following the analogy with classical abelian groups, the key
property will be that Σ∞ can be promoted to a symmetric monoidal functor
respecting smash product (i.e., sending ∧ to ⊗). This is the content of
Theorem II.6.0.1 below.

II.3. Free groups that are more and more commutative

Given a pointed space X, how would one construct a “free associative
group” generated by X?

To start, let us assume X is a pointed set. We have a concrete set-
theoretic construction of the free group generated by X (modulo the sub-
group generated by the point). But we’d like something more clearly topo-
logical.

Let us consider the following topological construction: The reduced sus-
pension ΣX of X is homotopy equivalent to a wedge of circles. A wedge
of circles has no higher homotopy groups, and has π1 isomorphic to the
free group on X \ {x0}. Thus its based loop space is homotopy equivalent
to FreeNon-Ab(X)/FreeNon-Ab({x0}), and loop concatenation is compatible
with the group structure on the free group.

This is where a picture ought to be to illustrate ΣX. If you want to pro-
vide Hiro with a good picture, please do. Hand-drawn pictures (see I.1.2.1)
are welcome!

This construction – taking a pointed set X to the based loop space of
its reduced suspension – actually works all the time. Put more precisely,
consider the construction

ΩΣ : Spaces∗ → Egp
1 .

Here, the domain is the category of pointed spaces (morphisms are con-
tinuous maps respecting basepoints). The target, Egp

1 (which stands for
E1-groups), is the category of loop spaces – objects are loop spaces ΩY , and
morphisms are maps of loop spaces, meaning maps ΩY → ΩZ that arise as
Ω of some continuous map g : Y → Z respecting basepoints.8 The below

8We will encounter the term E1 again later; it is a synonym to the word A∞. By
definition, an E1-group is an A∞-algebra whose π0 is a group. It is not at all a priori
obvious that an E1 group is the same thing as a based loop space. That an En-group is the
same thing as an n-fold loop space is May’s recognition principle. Though this is a theorem,
we treat it as an axiom for the expediency of exposition. (The recognition principle tells
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proposition says that ΩΣ is the free functor, sending a pointed space to the
free associative group generated by it.

Proposition II.3.0.1. ΩΣ is left adjoint to the forgetful functor.

Proof. We have that

homEgp
1
(ΩΣX,ΩY ) ≃ hom∗(ΣX,Y ) ≃ hom∗(X,ΩY ) = hom∗(X,Forget(ΩY ))

and all the equivalences are natural. □

Remark II.3.0.2. Let us give an informal motivation as to why the
map X → ΩΣX is like a map from a pointed set to a free group on that
pointed set (with prescribed identity). We will not be precise here. Any
x ∈ X determines a “longitudinal curve” in ΣX given by the image of
the interval [0, 1] × {x}, so clearly any element of X defines an element of
ΩΣX. On the other hand, each longitudinal curve can be run in reverse, so
every element of X is now given some formal inverse. The topology of X is
obviously respected, in the sense that if two points are nearby in X, then
the associated longitudinal curves are nearby in a controlled sense. Finally,
note that if X has multiple components, then the associated longitudinal
loops have no relation between them; this is perhaps most easily seen when
you take X to be a discrete set. So at least at the level of π0, we do witness
a (non-commutative) group emerging in ΩΣX and the map X → ΩΣX
plays the role of picking out the generators. Note that because the reduced
suspension collapses the curve [0, 1]×{∗} to be constant, the basepoint does
indeed play the role of a prescribed unit for this group.

More generally, ΣnX is a space which clearly has a longitudinal n-sphere
arising naturally from every point of X (though it certainly contains more
n-spheres), and ΩnΣnX is a “En-commutative” group by virtue of being an
n-fold loop space.

Proposition II.3.0.3. We have an adjunction

ΩnΣn : Spaces∗ ⇐⇒ Egp
n : U

between pointed spaces and En-commutative groups (i.e., n-fold loop spaces).
Here, U sends an n-fold loop space ΩnY to itself, as a pointed space.

By definition, objects of Egp
n are spaces of the form ΩnY , and a map is a

map of the form Ωng for some continuous g : Y → Z preserving basepoints.

Proof. We again have

homEgp
n
(ΩnΣnX,ΩnY ) ≃ hom∗(Σ

nX,Y ) ≃ hom∗(X,ΩnY ).

□

us that this axiom is consistent, even if redundant, with the rest of mathematics.) The
theorem was used implicitly in justifying the notion of “more and more commutative
group” in Lecture One.
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Take-away: The space ΩnΣnX is the “free En-commutative
group” generated by X.

This take-away goes back to the work of Peter May9.

II.4. Suspension spectra defined

Now, if you have a continuous function f : S → X between pointed
spaces, you have an induced continuous function Σf : ΣS → ΣX between
their suspensions. So, the suspension functor defines maps

hom∗(S
n,ΣnX)→ hom∗(S

n+1,Σn+1X).

(Here, hom∗ is the space of continuous maps respecting basepoints.) These
mapping spaces are, by definition, loop-spaces, so we can rewrite10 the above
as maps

ΩnΣnX → Ωn+1Σn+1X.

That is, each time we have a map of a sphere to (a suspension of) X, we
can suspend that map to obtain a map from a higher-dimensional sphere to
a higher-dimensional suspension of X.

Remark II.4.0.1. For any space X, one has a natural map uX : X →
ΩΣX. One can think of this geometrically as “given a point of X, consider
the longitudinal loop in ΣX passing through x.” Categorically, this is the
unit of the Σ-Ω adjunction. Then the map ΩnΣnX → Ωn+1Σn+1X can be
realized as ΩnuΣnX . In particular, it is a map of n-fold loop spaces.

So, Mother Nature has provided us with natural maps

(II.4.1) X → ΩΣX → Ω2Σ2X → Ω3Σ3X → . . .

and in light of the take-away from the previous section, we may interpret
these maps as realizing more and more commutative groups generated by
X. As curious humans, how can we not take the “limit” of this sequence?

That is, because we have a sequence of inclusions, we may as well take the
increasing union; if you want a more point-set independent way of describing
the result, we take the homotopy colimit (i.e., homotopy direct limit) of the
above sequence.

Notation II.4.0.2 (QX). Let X be a pointed topological space. The
colimit/increasing union of the sequence (II.4.1) is sometimes written

QX.

9J. P. May, The Geometry of Iterated Loop Spaces, Lecture Notes in Mathematics.
Springer-Verlag Berlin Heidelberg 1972. A free and TeXed version is available on Peter’s
website.

10Be careful; many students for whatever reason are tempted to think ΩnΣn = (ΩΣ)n

but this is not true. See Exercise I.10
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Construction II.4.0.3 (The suspension spectrum Σ∞X). Let X be a
pointed topological space. Define a space

(Σ∞X)0 = colimn≥0Ω
nΣnX.

(This is the increasing union of the diagram pictured in (II.4.1).) More
generally, we define

(Σ∞X)i = colimn≥iΩ
n−iΣnX.

We have maps

Ω((Σ∞X)i) ≃ hom∗(S
1, (Σ∞X)i)

≃ hom∗(S
1, colimn≥iΩ

n−iΣnX)

≃ colimn≥i hom∗(S
1,Ωn−iΣnX)(II.4.2)

≃ colimn≥iΩ
n−(i−1)ΣnX

≃ (Σ∞X)i−1

thus exhibiting Σ∞X as a spectrum.

Remark II.4.0.4. The equivalence (II.4.2) is a result of the circle being
a compact topological space. Given an increasing sequence of spaces Ai ⊂
Ai+1 ⊂ . . ., if a compact space S maps to the union

⋃
Ai, compactness tells

us that the map must factor through some finite stage of the infinite union.
In particular, the mapping space from S to the union ∪Ai is the union of
the mapping spaces from S to each Ai.

This remark is heavily point-set inspired; but the same argument in the
∞-categorical setting yields the same result. For instance, any homotopy
colimit of a sequence can be computed as an increasing union, simply by
replacing each object and arrow in the sequence by homotopy equivalent
data for which each arrow is a cofibration (a nice kind of injection). It’s
a theorem that when every arrow of a sequence is a nice inclusion, the
sequential homotopy colimit can be computed as an honest sequential colimit
(i.e., increasing union).

Definition II.4.0.5. We call Σ∞X the suspension spectrum associated
to the pointed space X.

Any spectrum homotopy equivalent to Σ∞X for some X will also be
called a suspension spectrum.

Remark II.4.0.6. A continuous map of pointed spaces induces a map
of suspension spectra. We leave this verification to the reader, and for
the reader to contemplate what it means for Σ∞ to respect composition of
functions in Exercise II.12.

Example II.4.0.7. Suspension spectra do not have negative homotopy
groups. For example, in the example of the sphere spectrum, a negative
homotopy group would have to come from π0Ω

n−iSn for some i ≥ 1. But
Ωn−iSn is the space of maps from the (n − i)-dimensional sphere into Sn,
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and all maps from lower-dimensional spheres to higher-dimensional spheres
are homotopic to a constant map.

(Sketch of proof: You can homotope any map from a low-dimensional
sphere to miss at least one point of Sn; that means the map factors through
Rn ∼= Sn \ ∗, but this is contractible, so the map can further be contracted
to be constant. This is the beginnings of cellular approximation, which says
any k-dimensional complex maps in a way that can be homotoped to land
in the k-skeleton of the target.)

If X is any topological space and Σ∞X is its suspension spectrum, the
same argument as before shows this when X is a CW complex, by cel-
lular approximation. Because we only consider (in these lectures) spaces
homotopy equivalent to a CW complex, and suspension preserves homotopy
equivalences, the claim follows for such general X as well.

II.5. The sphere spectrum

Definition II.5.0.1. Let X = S0 be the 0-sphere – the pointed space
with exactly two points in it. Then we denote

S := Σ∞S0

and we call this suspension spectrum the sphere spectrum.
We will also often write

Sn := Σ∞Sn.

Remark II.5.0.2. The pointed set with a single element has (reduced)
free group given by the 0 group; and the pointed set with two elements has
Free∗(S

0) = Z. Thus, whatever the sphere spectrum is, it should be thought
of as the “free commutative group in spaces” generated by a single element.
Its analogue over a classical commutative ring R would be the free rank 1
module over R.

Remark II.5.0.3. You might wonder, then, what QS0 looks like. That
is a phenomenal question.

The homotopy groups of QS0 are called the stable homotopy groups
of spheres.11 It is a very wide-open problem to characterize the homotopy
groups of this space in any meaningful fashion. What we have at present
is the powerful machinery of chromatic homotopy theory, and the emerging
motivic homotopy theory, to try and compute the homotopy groups of QS0

one prime at a time. (It has been known since the work of Serre12 that

11Why stable? First, it follows straight from the definitions that πi(QS0) ∼=
colimk→∞ πi+k(S

k). By Freudenthal’s Suspension Theorem this colimit/union stabilizes
for k large enough. You can think of the term stable as referring to this stability, but
now-a-days stable just means “what happens when you suspend a lot of times.”

12Serre, Jean-Pierre (1951), “Homologie singulière des espaces fibrés. Applications”,
Annals of Mathematics, Second Series, 54 (3): 425–505, doi:10.2307/1969485, JSTOR
1969485, MR 0045386.



D
ra
ft

58 II. SMASH PRODUCT AND FREE-FORGET

all stable homotopy groups, aside from π0 ∼= Z, are finite groups.) Proba-
bly the current cutting edge has been achieved by Isaksen-Wang-Xu, and I
highly recommend the introduction of their arXiv pre-print13 to get a view
of modern methods.

II.6. Smash product

We’ve constructed Σ∞, which you should think of as the free functor
taking a pointed space to the “free abelian group” (spectrum) generated by
that space. Here is a theorem. You know almost enough to try and convince
yourself of the first part of the theorem; that is left to you in II.13. The
latter parts regarding the smash product, however, we will not attempt to
prove.14

Theorem II.6.0.1. There exists an adjunction of ∞-categories

Σ∞ : Spaces∗
..
Spectra : Ω∞

nn

where the left adjoint takes a pointed space to its suspension spectrum (Con-
struction II.4.0.3) and the right adjoint takes a spectrum to its underlying
space (the 0th space).

(a) Further, there exists a symmetric monoidal structure ⊗ on Spectra that
allows Σ∞ to be made symmetric monoidal with respect to smash prod-
uct of spaces. In particular, one can supply natural equivalences

Σ∞(A ∧B) ≃ (Σ∞A)⊗ (Σ∞B).

(b) Moreover, ⊗ is the unique symmetric monoidal structure that preserves
colimits in each variable, and which renders Σ∞ symmetric monoidal.

Remark II.6.0.2. The above theorem characterizes the smash product,
given that you know what spectra are. The ∞-category of spectra has a
characterization as the universal stabilization of the ∞-category of spaces,
but we won’t be able to touch on that here.

Remark II.6.0.3 (Some infinity-categorical ideas will be swept under
the carpet). I used the term ∞-categories in the above theorem, and at
present, this is by far the most natural way to articulate the theorem.

We have long been seeking the correct languages to describe systems con-
taining rich homotopies. If you play with Fukaya categories, you know that
A∞-structures emerge inevitably, and that they are indispensible algebraic
ingredients that help organize geometric phenomena. Higher homotopies
serve analogous roles in modern homotopy theory. Because these things are
as rich as they are important, the best methods we utilize take some time

13Daniel C. Isaksen, Guozhen Wang, Zhouli Xu. “More stable stems.”
arXiv:2001.04511.

14We give an outline of one proof in Section II.11.
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to learn; and because these things take a long time to learn, people are in-
vested in various methodologies, and this can lead to some incongruences in
the community’s philosophies.

One method for avoiding a lot of higher homotopies is the method of
model categories, due to Quillen. While model categories have been hugely
successful, and are often quite natural at organizing the homotopical struc-
tures in various settings, the biggest impediment to utilizing model category
techniques is that model category structures often do not exist in examples
of interest. Moreover, even in the settings where the necessary ingredients
might exist, using only model categories to study homotopy theory is like
defining manifolds as entities equipped with embeddingsX ⊂ RN .15 It is fine
to do these embedding-dependent computations, but there are some ways to
view particular manifolds that simply do not allow for efficient methodology
if we must always employ an embedding into Euclidean space.

I bring all this up to say: At present, I do not know how to articulate
the uniqueness in Theorem II.6.0.1 (b) using only the language of model
categories, in any natural way.16 It may even be that such a formulation
of (b) cannot exist without using some ∞-categorical language.

By the way, one utility of ∞-categorical constructions made a minor
appearance in Remark I.2.0.7; sometimes, it is best not to have to de-
fine composition, but to simply say what you would like of a homotopy-
coherent diagram. Any demand that [0, 1] concatenated with itself must be
equipped with a re-parametrization to fit into [0, 1] is unnatural from the
∞-categorical viewpoint; to expand the analogy further, one might view the
Moore path space model as one “embedding of a manifold” for dealing with
this issue.

Remark II.6.0.4 (Definitions of smash product). You are justified if you
feel some frustration – what is ⊗? How is it defined?

You may see some models for ⊗ in later lectures by Cary; I also give some
constructions in the exercises – see II.23 and II.24. But for now, you should
feel a bit like a student who is learning the Eilenberg-Steenrod axioms, but
who hasn’t been given a model of any homology theories. Rest assured that
there are models, but that you sometimes don’t need these models when
performing computations or concluding important facts. We will see how to
conclude some important facts soon.

For the rest of this lecture, we will be content with item (b) of the
theorem. It at least gives you a way to test whether a model is what it
purports to be. If anybody tries to give you a formula for the smash product

15This was, for some time, the definition of manifold before the atlas definition came
along.

16For example, even after fixing a model category for spaces, what if there are two
natural symmetric monoidal model categories of spectra – both enjoying the expected
Quillen adjunction with spaces – that do not admit a lax symmetric monoidal Quillen
equivalence between them?
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of spectra, but the model doesn’t satisfy (b), run away and do not get in
their van.

Example II.6.0.5 (The sphere spectrum is a commutative ring). Let
S0 be the pointed topological space called the 0-dimensional sphere. Then
S0 is a commutative algebra in Spaces∗ (see Exercise I.14). Because Σ∞ is
symmetric monoidal, it takes units to units; so the sphere spectrum Σ∞S0 =
S is the unit spectrum.

Exercise I.14 was about symmetric monoidal categories, and not sym-
metric monoidal ∞-categories. But the analogous statements hold in the
∞-categorical setting. In particular, the sphere spectrum is a commuta-
tive ring, and for any other commutative ring spectrum A, the unit map
u : S→ A is a commutative ring map. In this sense, the sphere spectrum is
the initial commutative ring.

Remark II.6.0.6. It is a general fact of category theory that a right ad-
joint to a symmetric monoidal functor is lax symmetric monoidal. This holds
in the ∞-categorical setting as well, so that Ω∞ is lax symmetric monoidal.
It’s okay if you don’t know what that means; but as a consequence, if Y is a
spectrum with some multiplicative structure, then the space Ω∞Y will also
have that multiplicative structure.

In light of Example II.6.0.5, this means that QS0 = Ω∞S does not just
have a homotopical abelian group structure (given by the colimit of ΩnSn)
but also has a multiplicative structure that is linear over this abelian group
structure. See Exercise II.21.

II.7. Freudenthal suspension theorem (not covered in lecture)

This section is for computational purposes; it is not necessary to setting
up any of the theory, but most of us need to compute something at some
point in our research.

Big colimits, even if they’re nice sequential ones, can look a bit intim-
idating at first glance. For instance, even if you wanted to compute π0 of
the 0th space of a suspension spectrum, how would you do it?

Though this is historically backward, the Freudenthal suspension theo-
rem allows you to compute these homotopy groups at a finite stage of the
colimit. (Historically, the Freudenthal suspension theorem is one of the
things that encouraged people to pass to sequences of suspensions to study
stable homotopy groups.) The theorem says that if X has no topology be-
tween dimensions 0 and n, then up to twice the dimension of n, homotopy
groups are unchanged by taking free groups.

Theorem II.7.0.1 (Freudenthal suspension theorem). LetX be n-connected,
meaning that πi = 0 for all i ≤ n. Then the natural map

πk(X)→ πk(ΩΣX)

is an isomorphism for k ≤ 2n. It’s in fact a surjection for k = 2n+ 1.
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We will not give a proof here.

Remark II.7.0.2. The “natural map” of the theorem is the one induced
by the suspension functor:

hom∗(S
k, X)→ hom∗(ΣS

k,ΣX) ∼= hom∗(S
k,ΩΣX).

Now just apply π0 on both sides. The reason we present the theorem in the
above way is to simplify the indexing of the k and n indices.

Example II.7.0.3. Let X be the 2-sphere, which is 1-connected (i.e.,
n = 1). Then the map

π3(S
2)→ π3(ΩS

3) ∼= π4(S
3)

is a surjection and

πn+1(S
n)→ πn+2(S

n+1)

is an isomorphism for all n ≥ 3. So the homotopy group π1 of the sphere
spectrum is computed by identifying π4(S

3). It turns out that this group
is Z/2Z, and its non-trivial generator is hit by the Hopf element of π3(S

2);
this is the attaching map that creates CP 2 out of CP 1.

Example II.7.0.4 (Homotopy groups of suspension spectra). Let us
compute some of the homotopy groups of suspension spectra. We already
saw the negative homotopy groups are zero by a cellular approximation ar-
gument.

We have that

πi(Σ
∞X) ∼= πi(colimn→∞ΩnΣnX) ∼= colimn→∞ πn+i(Σ

nX).

By the Freudenthal suspension theorem, this stabilizes for large values of n;
these are called the stable homotopy groups of X.

(Note that ΣX is always connected, Σ2X is always 1-connected, and
ΣnX is always (n− 1)-connected.)

II.8. Why ∞-categories? (Not covered in lecture)

There are many compelling reasons to talk about ∞-categories; this
week, the most compelling reason not to delve into them is (unfortunately)
time.

But let me just give an indication of the difficulties one would encounter
if one tries to realize everything covered so far in the world of categories,
and not of ∞-categories.

In what follows, recall that for a pointed topological space X, we have

QX := colimnΩ
nΣnX

to be the free abelian group generated by X. We know that it models the
0th space of the suspension spectrum of X. There is the following no-go
theorem of Lewis from 1991:
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Theorem II.8.0.1 (Lewis17). Suppose T is the category of pointed spaces,
and S is some other category. Consider the following axioms:

(1) S has a symmetric monoidal structure ⊗.
(2) There exists an adjunction Σ∞ : T ⇐⇒ S : Ω∞.
(3) The unit for ⊗ is Σ∞S0.
(4) Either Ω∞ is lax monoidal with respect to ⊗ and ∧, or Σ∞ is op-lax

monoidal.
(5) There is a natural weak equivalence Ω∞Σ∞X → QX factoring the

inclusion X → QX through the unit of the adjunction.

There does not exist a symmetric monoidal category (S,⊗) satisfying the
above axioms.

Lewis knew full well the state of the field at the time of his article. Here
is the abstract from the paper:

The construction of the smash product of two spectra is
one of the most unsatisfactory aspects of every available
treatment of the stable category. Increased interest in en-
riched ring and module spectra has made the misbehavior
of smash products a source of growing frustration. This
paper conveys the unhappy message that this frustration
is unavoidable. Five simple, obviously desirable axioms
for a good category of spectra with a well-behaved smash
product are listed. Then it is shown that no category can
satisfy all five of these minimal axioms.

In contrast, by replacing the word category with ∞-category, we can
exhibit Spectra and Spaces∗ satisfying all the above axioms (in fact, Σ∞ is
symmetric monoidal).

Of course, before the advent of ∞-categories, many topologists got
around the above no-go theorem. For example, one can relax unitality (ex-
pressed via isomorphisms) to be expressed via weak equivalences.

II.9. The Pontrjagin-Thom theorem (not covered in lecture)

These notes hint at at least two reasons that the sphere spectrum S
ought to have a ring structure. First, S is the unit of a symmetric monoidal
structure (which makes S not only a ring but a commutative ring) – this is
motivated in Exercise I.14. Second, S is also realized as an endomorphism
algebra (this shows at least that S is an associative ring) – see Exercise II.21.
Let us give a third reason here, whose origins are geometric.

Construction II.9.0.1 (The space of framed cobordisms). We define a
space P combinatorically – i.e., by defining its collection Pk of k-simplices.
For every integer k ≥ 0, an element of Pk is roughly the data of

17L. Gaunce Lewis, “Is there a convenient category of spectra?”, Journal of Pure
and Applied Algebra, Volume 73, Issue 3, 1991, Pages 233-246, ISSN 0022-4049. https:
//doi.org/10.1016/0022-4049(91)90030-6.

https://doi.org/10.1016/0022-4049(91)90030-6
https://doi.org/10.1016/0022-4049(91)90030-6
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(i) A compact subset X ⊂ R∞×∆k which is a smooth manifold, possibly
with corners, whose projection to ∆k respects codimension. (Note that
the empty manifold is a manifold of every codimension, so X can be a
closed manifold so long as the embedding has no fibers above ∂∆k.)

(ii) A trivilialization (i.e., a framing) of the normal bundle of X.

We call P the space of framed cobordisms.

Warning II.9.0.2. The notation P is not standard. There is, as far as
I know, not a standard notation for the space of framed cobordisms.

Example II.9.0.3. The vertices of P are given by normally framed,
compact, 0-dimensional manifolds embedded in R∞. You can think of a
vertex, hence, as a collection of points, each point assigned a plus or minus
sign. A 1-simplex between two such vertices is a framed cobordism between
these points. In particular, we see that π0P ∼= Z, given by the signed count
of points.

More generally, the homotopy groups of P are the framed cobordism
groups.

Theorem II.9.0.4 (Classical Pontrjagin-Thom Theorem). For all i ≥ 0,
there exists an isomorphism

πi(P ) ∼= πi(QS0).

In other words, the stable homotopy groups of spheres compute the framed
cobordism groups of manifolds.

Now, because S is a ring spectrum, its homotopy groups (hence the
homotopy groups of QS0) form a graded ring – see Exercise II.22. Is there an
additive, and a multiplicative, structure on the space of framed cobordisms?

Yes. Given two closed framed i-manifolds, their disjoint union is also a
closed framed i-manifold. This gives the addition on πi(P ). And the direct
product of two closed framed manifolds of dimensions j and k is again a
closed framed manifold. This gives the map πi(P )× πj(P )→ πi+j(P ).

But, of course, we would like to realize these operations at the π∗ level
as “space-level” operations – that is, write a map P × P → P encoding
the disjoint-union-of-manifolds operation, and a map P × P → P encoding
the direct-product-of-manifolds operation. Indeed, a commonly accepted18

form of the Pontrjagin-Thom theorem states that one can create such a
model for operations on P rendering it a ring, and that the Pontrjagin-Thom
isomorphism on π∗ in fact arises from an equivalence of rings P → QS0.

In other words, the ring structure of the sphere – where addition arises
from the pinching of i-dimensional spheres, and where multiplication arises
from the fact that Si ∧ Sk ∼= Si+k – is equivalent to the ring structure
of the space of framed cobordisms. I don’t know which incarnation is more
fundamental and basic, but this is a beautiful fact that resonates throughout
modern topology. This fact, and its descendants, allow us to make progress

18But I do not know where, or if, it is written.
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in the classification of smooth manifolds by performing computations in
spectra.

Remark II.9.0.5. We take the Pontrjagin-Thom theorem to illustrate
two philosophical points. First, it makes us think that both stable homotopy
theory and cobordism theory are important. (When two natural, nuanced,
and disparate machines recover each other, it seems that mother nature is
pointing us in the right direction.)

Second, the theorem illustrates a phenomenon wherein algebraic struc-
tures of geometric origins rarely want “strict” or “equality-based” charac-
terizations – there is no one way to embed a disjoint union of manifolds.
One can appreciate why, in setting up spectra, one would like a framework
flexible enough to accommodate geometry as giant and convenient as the
space of embeddings of manifolds into R∞.

II.10. Generalized cohomology theories and Brown
representability (not covered in lecture)

Whatever one meant by spectra, it was known early on that spectra give
rise to “generalized cohomology theories.”

Let us motivate this term. First, when A is an abelian group, and HA
is the associated spectrum (i.e., the Eilenberg-MacLane spectrum), we can
take a space X and perform the following sequence of operations

X 7→ Σ∞X 7→ homSpectra(Σ
∞X,HA)

and compute the homotopy groups of this mapping space. In fact, this map-
ping spaces is itself the 0th space of a natural spectrum – see Exercise I.17 –
so one can compute its negative homotopy groups as well. It turns out that

π−i recovers precisely the reduced cohomology H̃ i(X;A) – see Exercise II.26.
More generally, for any spectrum Y , the assignment

X 7→ π∗ homSpectra(Σ
∞X,Y )

satisfies a generalized version of the Eilenberg-Steenrod axioms for cohomol-
ogy. In what probably seemed like a deep miracle at the time, the Brown
representability theorem discovered that any graded-abelian-group invariant
of spaces satisfying such axioms must arise form a spectrum Y via the above
construction.

For this reason, it was (and still is, in some circles) common to think of
spectra as generalized cohomology theories.

However, spectra are far richer than the cohomology theories to which
they give rise. This is not obvious at the level of objects, in that two
equivalent cohomology theories do give rise to equivalent spectra. What
matters is the morphisms. There exist morphisms between spectra that
give rise to the zero map in the respective cohomology theories, but that are
not (homotopic to) a zero map between spectra.
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II.11. How do we prove the existence of the smash product?
(not covered in lecture)

The hardest parts of Theorem II.6.0.1 are that there is a symmetric
monoidal structure on Spectra, and that is it the unique one satisfying cer-
tain properties. As I’ve hinted many times in these notes, it seemed an
eternal struggle (lasting decades) in homotopy theory to pin down such
a construction. The struggle led to many people developing amazing un-
derstanding of things like finite sets and bijections, the geometry of how
Euclidean spaces and their isometries behave as we increase dimension, con-
figurations of points, et cetera, et cetera, et cetera. The problem of course
is that when you develop different models, our techniques become different
from one community to the next, and our research community can fracture.
Imagine being a student being raised on one diet of spectra, only to find as
you develop that different communities digest different kinds of spectra.

Remark II.11.0.1. Flipping the abundance of models on its head, what
we realize is that there ought to be one common principle that explains
why each of these models are supposed to be morally correct. To create a
mathematical framework in which this principle is a theorem would be the
hare-brained approach (see Adams’s quote in Section I.7; “hare-brained” is
not meant to be diminutive).

Amazingly, the technique that I learned (from Lurie’s writings) to prove
Theorem II.6.0.1 involves no knowledge of the intricate geometric studies
I just listed. It is proven by moving in a completely different academic
direction – by utilizing higher category theory.

There’s a disgustingly slick trick that allows us to prove the theorem. For
expediency I will not define all the terms. The main reference is Section 4.8.2
of Lurie’s Higher Algebra, freely available from Lurie’s web page. You can
also take a look at David Gepner’s chapter in the Handbook of Algebraic
Topology19.

Lemma II.11.0.2. In any monoidal ∞-category C⊗ (the superscript ⊗ is
to pin down the notation for the monoidal product), the following data are
equivalent:

(a) A unital associative algebra20 R for which the multiplication map R ⊗
R→ R is an equivalence.

(b) A localization21 functor L : C→ C of the form X 7→ X ⊗R.

19David Gepner, “An Introduction to Higher Categorical Algebra,” arXiv:1907.02904.
20We have not defined this explicitly yet, but you can imagine there is a way to codify

when a product is associative up to higher and higher homotopies, similar to our approach
in Lecture I.

21Roughly, this means that for any object B in the image, we have a natural equiva-
lence homC(A,B) ≃ homLC(LA,B).



D
ra
ft

66 II. SMASH PRODUCT AND FREE-FORGET

Moreover, when C⊗ is symmetric monoidal, the image LC inherits a sym-
metric monoidal structure for which L is a symmetric monoidal functor. In
particular, R inherits a canonical commutative algebra structure.

Remark II.11.0.3. If you are familiar enough with categories to con-
template the above lemma, I encourage you to do so. After working out
a few examples, it becomes compellingly true, and it’s the kind of thing
a lot of experts just “know” even without proof. For a proof and dis-
cussion, see 4.8.2 of Lurie’s Higher Algebra. Another resource is a paper
of Lazarev-Sylvan-Tanaka22, where we unknowingly reproduced things that
were already contained in Higher Algebra23.

Example II.11.0.4. The prototypical example is to take C = Ab to be
the category of abelian groups, with ⊗Z, and choose R = Z[1/p] for some
prime p. This example also gives some idea of the origins of the word
“localization,” as tensoring with Z[1/p] is like restricting a sheaf on Spec(Z)
to an open subset of Spec(Z).

The example in which we apply the lemma is as follows: We let PrL be
the symmetric monoidal category of presentable ∞-categories, and whose
functors are those that preserve all colimits24. Informally, this means that
an element A of this category is an ∞-category admitting all limits and
colimits, and is generated under colimits by a small collection of objects. We
define the tensor product on PrL to be the universal one which preserves all
small colimits in each variable.25 The unit of PrL is the ∞-category Spaces
of spaces.

To prove Theorem II.6.0.1, it thus suffices to show that the∞-category of
spectra Spectra is an idempotent in PrL, with the unit map Spaces→ Spectra
given by the functor X 7→ Σ∞(X+).

The proof of this fact relies on the equivalence in the lemma above,
by showing that there is a universal way to turn a presentable ∞-category
into a stable one. This universal way, called the stabilization process, is
easily proven to be a localization of PrL. Roughly, and in only slightly more
concrete terms, this comes down to the fact that a colimit-preserving functor

22Localization and flexibilization in symplectic geometry, with Oleg Lazarev and
Zachary Sylvan. arXiv:2109.06069

23It is very common in the field to discover a fact about ∞-categories that was already
contained somewhere in Lurie’s works.

24The Pr is for “presentable.” The L is for “left adjoints,” because colimit-preserving
functors between presentable ∞-categories are always left adjoints.

25The construction of this ⊗ is formal, but is only formal if one uses facts about
∞-categories that are most easily proven using the combinatorial models due to Joyal and
Lurie. Indeed, these “formal” proofs rely on the two ideas of marked simplicial sets and
(co)Cartesian/categorical fibrations of simplical sets – the absence of (easily articulable
analogues of) these concepts in other models of higher categories is one huge reason that
∞-categories are, at present, the most efficient model for proving formal results in higher
category theory.
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from A to a stable B is the same thing as a map from the stabilization of A
to B.

So one abstractly finds a symmetric monoidal structure on Spectra. How
do we compute anything about it? We indicate how in the exercises; see in
particular Exercise II.24.
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Exercises

II.12. Σ∞ on morphisms

Fix a continuous map of pointed spaces f : X → Y .

(a) Convince yourself that f induces a map of spectra Σ∞X → Σ∞Y .
(b) What can you say about how Σ∞ respects “composition?” (It may help

to read Remark I.2.0.7.)

II.13. The (Σ∞,Ω∞) adjunction

(This exercise assumes some familiarity with category theory tools; namely,
using Kan extensions to compute limits step by step. Even if you don’t know
much about these techniques, it may be a good opportunity to look under
the hood of the vehicles homotopy theorists tend to drive.)

Prove the following theorem:

Theorem II.13.0.1. For any pointed space A and any spectrum Y , there
is an equivalence of mapping spaces

homSpectra(Σ
∞A, Y ) ≃ homSpaces∗(A, Y0).

Hint of a proof. Unless equipped with a subscript, hom always means
homSpaces∗ .

Consider the staircase-shaped diagram

hom(A, Y0)

hom(ΩΣA, Y0)

OO

hom(ΣA, Y1)oo

hom(Ω2Σ2A, Y0)

OO

hom(ΩΣ2A, Y1)

OO

oo hom(Σ2A, Y2)oo

...

OO

...

OO

...

OO

. . .

The limit of the diagram can be computed as the right Kan extension along
the collapse of the diagram to a point. One can factor this collapse in two
ways: First by collapsing the columns of the diagram, or by first collapsing
the rows.

69
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Collapsing the columns, one obtains a sequential inverse limit diagram
whose entries are computed by the computing the limits of each column.
The limit of the ith column is by definition

hom(QΣiA, Yi) ≃ hom(colimΩnΣn+iA, Yi) ≃ lim hom(ΩnΣn+iA, Yi)

so the limit of the staircase diagram above is computed as

lim
(
hom(QA, Y0)

Ω←− hom(QΣA, Y1)
Ω←− . . .

)
.

Here, the notation Ω is shorthand for the composite

hom(QΣiA, Yi) ≃ hom(ΩQΣi+1A,ΩYi+1)
Ω←− hom(QΣi+1A, Yi+1).

This sequential limit is, by definition, homotopy equivalent to homSpectra(Σ
∞A, Y ).

Now let us compute the limit of the staircase diagram by first collapsing
the rows. Each row has an initial vertex given by hom(ΣiA, Yi); by defi-
nition of limit, these initial vertices are the limits of each row. By tracing
through the definitions, one recognizes the maps between these row-wise
limits as realizing the (Σ,Ω)-adjunction (or the free-forget adjunction for
En-commutative groups), so the limit of the staircase diagram is computed
as the limit of the tower of equivalences

hom(A, Y0)

hom(ΣA, Y1)

∼
OO

...

∼

OO

hence is equivalent to hom(A, Y0).
□

II.14. Homotopy groups of spectra are detected by the sphere
spectrum.

(1) Using the free-forget adjunction for spectra, prove the positive
homotopy groups of the spectrum X are precisely the homotopy
groups of the mapping space of maps from the sphere spectrum to
X. (This is analogous to how the cohomology groups of a chain
complex A are the cohomology groups of the hom cochain complex
hom(Z, A).)

Remark II.14.0.1. In fact, we saw evidence in Exercise I.17
that Spectra is enriched over itself; so the mapping spectrum from
S actually recovers all homotopy groups of X.

(2) For all n ≥ 0, there is a pinch map Sn → Sn ∨ Sn (Exercise I.11).
Because the wedge sum ∨ is the coproduct of pointed spaces and
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Σ∞ preserves colimits, there is an induced map Sn → Sn ⊕ Sn of
spectra; hence there is an induced map

homSpectra(Sn, X)× homSpectra(Sn, X)→ homSpectra(Sn, X).

Taking π0 of these mapping spaces, we thus have a map πn(X) ×
πn(X)→ πn(X). Show that this agrees with the usual addition on
πn(X) = πn(X0).

II.15. Shifts and suspensions

Given that Σ∞ is a left adjoint, it preserves colimits.26

(a) Recalling the definition of the (reduced) suspension of a pointed space,
show it follows straight from the definitions that

(Σ∞(ΣX))i ≃ (Σ∞X)i+1.

(b) Let A and B be pointed topological spaces. Convince yourself that a
pointed continuous map from ΣA to B is the same thing as a homotopy
from the constant map A→ B to itself (through maps of pointed topo-
logical spaces). In other words, the homotopy pushout of the diagram

A //

��

∗

∗
is given by the homotopy commuting diagram

A //

��

∗

��
∗ // ΣA

(where the “square” itself encodes a homotopy from the constant map
A→ ΣA to itself).

(c) Given a spectrum X = (Xi, fi) one can define two different shifts of the
spectrum – by declaring (X[1])i = Xi−1 or (X[−1])i = Xi+1. By using
the fact that Σ∞ preserves colimits – and hence homotopy pushouts –
conclude that when X is a suspension spectrum, one of these shifts is in
fact a homotopy pushout of X along two zero maps.

(d) Conclude that, for spectra, Σ and Ω are mutually inverse. (See Exer-
cise I.16.)

(e) By example, demonstrate that Σ and Ω are not mutually inverse oper-
ations on topological spaces.

26More accurately, Σ∞ preserves all homotopy colimits; it only preserves colimits for
very particular models of spaces, spectra, and of Σ∞. Any reasonable model of Σ∞, on
the other hand, preserves all homotopy colimits. If this distinction doesn’t mean much to
you, you can ignore it.
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Remark II.15.0.1. Indeed, one way to think of the theory of spectra
is as the theory obtained from spaces by universally inverting Σ (or Ω).
The word theory is a bit vague; one can make this precise using the
language of ∞-categories.

II.16. Spectra arise from shifts of suspension spectra

Given a spectrum X, let Σ−nX denote the spectrum whose ith space
is given by Xi−n. (One could likewise notate this spectrum as ΩnX, or as
X[−n].)
(a) Show that any spectrum X, with nth space given by Xn, admits a

natural map

(II.16.1)
(
colimn→∞Σ−nΣ∞Xn

)
→ X.

(Hint I: There is a natural map Σ∞ΩA→ ΩΣ∞A for any pointed space
A. Here, we interpret Ω of a spectrum as a homotopy pullback along
the zero map, or as a shift of A. See Exercise II.15(c).)

(Hint II: The shift functor is an autoequivalence of Spectra; hence it
preserves all limits. Thus, the composition Ω∞−n := Ω∞◦Ω−n preserves
all limits, so there is a left adjoint from spaces to spectra that one might
denote by Σ∞−n. Identify this left adjoint with Σ−nΣ∞. Use this to
conclude that there are natural maps Σ−nΣ∞Xn → X. You’ll want to
show that these two hints are compatible to exhibit the map (II.16.1). )

(b) (*) Prove that the above map is an equivalence. (Hint: Using the fact
colimits of domain objects turn into limits of mapping spaces, and using
adjunctions deftly, exhibit a map from homSpectra(X,Y ) into a limit of
mapping spaces limhom∗(Xn, Yn) – tracing through your use of adjunc-
tions, interpret this limit as picking out exactly those maps Xn → Yn
that respect the delooping maps Xi ≃ ΩXi+1 and Yi ≃ ΩYi+1. Con-
clude that both sides of (II.16.1) corepresent the same functor.) Note
that this proves that every spectrum is a colimit of shifted suspension
spectra.

II.17. Long exact sequences for homotopy groups

(a) Suppose that

F
i //

��

E

p

��
∗ b0 // B

is a fiber sequence of spaces. This means p is a fibration (if you’re not
familiar, you can pretend this means p is a fiber bundle) and F is the
fiber of p above b0. Look up (don’t spend your time proving) the fact
that there is a long exact sequence of homotopy groups

. . .→ πk(F )→ πk(E)→ πk(B)→ πk−1(F )→ . . . .
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Just try to understand what this means; you will use it soon.
(b) Now suppose that the above diagram is more generally a homotopy

pullback diagram.27 (It is a fact that fiber sequences are homotopy pull-
backs.) Convince yourself that the top square, and the vertical rectangle,
in

ΩB

��

// ∗

��
F

i //

��

E

p

��
∗ b0 // B

are both homotopy pullback diagrams. (You will want to supply the
homotopies for both diagrams.)

(c) Using the fact that a homotopy from the constant map Sn → B to
itself defines a map Sn+1 → B, prove there is a long exact sequence of
homotopy groups

. . .→ πk(F )→ πk(E)→ πk(B)→ πk−1(F )→ . . . .

This proof using the homotopy pullback property is different from, say,
the proof you find in Hatcher. This in particular proves the long exact
sequence from part (a).

(d) (*) More generally, if one has a homotopy pullback square of spaces

A //

��

B

��
B′ // C

show one has a long exact sequence of homotopy groups

. . .→ πk(A)→ πk(B)⊕ πk(B
′)→ πk(C)→ πk−1(A)→ . . . .

Remark II.17.0.1. Philosophically, while homology is well-behaved
when gluing things together (see, e.g., Mayer-Vietoris) homotopy groups
are well-behaved for homotopy-fibering spaces together.

(e) By definition, a homotopy pull-back diagram in an ∞-category C is a
diagram

A //

��

B

��
B′ // C

27This implies that the diagram is equipped with a homotopy H between p ◦ i and
b0, and that for any space W , composition with i induces an equivalence

hom(W,F ) ≃ {(g,G)}, f 7→ (i ◦ f,H ◦ f)
where the righthand side is the space of pairs with g : W → E continuous and G a
homotopy between pg and the constant map W → B with image b0.
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such that, for any object W , the diagram of mapping spaces

hom(W,A) //

��

hom(W,B)

��
hom(W,B′) // hom(W,C)

is a homotopy pullback diagram of spaces. Letting C = Spectra and
takingW = S0, conclude that any homotopy pullback diagram of spectra
gives rise to a long exact sequence of homotopy groups.

(f) It is a fact that any homotopy pushout diagram of spectra is in fact
a homotopy pullback diagram.28 Using the fact that Σ∞ preserves all
colimits (and hence sends homotopy pushout diagrams of pointed spaces
to homotopy pushout diagrams of spectra) prove that any homotopy
pushout diagram of pointed spaces

U //

��

W

��
W ′ // V

gives rise to a long exact sequence of homotopy groups

. . .→ πk(Σ
∞U)→ πk(Σ

∞W )⊕πk(Σ∞W ′)→ πk(Σ
∞V )→ πk−1(Σ

∞U)→ . . . .

Remark II.17.0.2. It turns out that most good covers V = W ∪W ′

in nature give rise to homotopy pushout diagrams by setting U = W ∩
W ′. Thus, even though Remark II.17.0.1 would discourage us from
seeking Mayer-Vietoris type computations of homotopy groups of spaces,
we see that stable homotopy groups satisfy the Mayer-Vietoris property.

II.18. Whitehead Theorem for spectra

In this exercise, we will sketch a proof of Whitehead’s theorem (the
version for spectra):

Proposition II.18.0.1 (Whitehead’s theorem, spectrally). Let f : X →
Y be a map of spectra inducing an isomorphism on all homotopy groups
πi, i ∈ Z. Then f is an equivalence of spectra.

(a) Convince yourself that the homotopy pullback of

Y

��
∗ // ∗

(where ∗ is the trivial spectrum, otherwise known as the zero spectrum)
is Y , with the map Y → Y (homotopic to) the identity morphism.

28This is is more or less equivalent to the fact that Spectra is a stable ∞-category;
as mentioned in the beginning of these notes, this is the one important phenomenon we
aren’t able to cover in these lectures.
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(b) Using the long exact sequence of homotopy groups of spectra, show that
if f : X → Y satisfies the hypotheses of Whitehead’s theorem, then the
pushout of f along the zero map X → ∗ is the trivial spectrum.

(c) Assuming29 that every pushout square in Spectra is also a pullback
square, prove Whitehead’s theorem.

II.19. Some simple mapping spaces

Let us say that a spectrum Y is discrete if πi(Y ) = 0 for all i ̸= 0.

(a) Let X be a suspension spectrum (meaning X = Σ∞A for some pointed
space A), and let Y be a discrete spectrum. Show that homSpectra(X,Y )
has trivial homotopy groups in degrees ≥ 1.

(b) Fix an integer k ≥ 0. Recall, or prove, that the collection of spaces whose
homotopy groups vanish above degree k is closed under all homotopy
limits. (Hint: It suffices to prove this that this collection is closed under
all products, and homotopy fiber products. The former is easy to see,
and the latter allows you to study long exact sequences of homotopy
groups.)

(c) Let X be an arbitrary spectrum, and let Y be a discrete spectrum. Show
that homSpectra(X,Y ) has trivial homotopy groups in degrees ≥ 1.

(Hint: (II.16.1) is an equivalence.)

II.20. QS0 cannot be made commutative on the nose

(a) Suppose G is a topological abelian group. Show that for every n ≥ 0,
the set of continuous maps homSpaces(∆

n, G) is an abelian group.

(b) Conclude30 that G is homotopy equivalent to a simplicial abelian group
(given by the singular complex Sing(G)).

(c) Conclude31 thatG is homotopy equivalent to a direct product of Eilenberg-
Maclane spaces.

Recall that any space X has a unique-up-to-homotopy-equivalence
Postnikov tower X → . . . → τ≤2X → τ≤1X → π0(X) where X →
τ≤n(X) is an isomorphism on πi for i ≤ n and where the homotopy
groups of τ≤n vanish in degrees > n. In particular, each projection

τ≤n+1X → τ≤nX

is a fibration with fiber K(πn+1(X), n+ 1). Fibrations with such fibers
are classified by homotopy classes of maps to

BK(πn+1(X), n+ 1) ≃ K(πn+1(X), n+ 2)

29This is the most important property of the ∞-category of spectra; it is tantamount
to the stability of the ∞-category.

30Requires prior knowledge of simplicial abelian groups.
31Requires knowledge of the Dold-Kan correspondence, and that fact that any chain

complex is equivalent, passing to a free resolution if necessary, to its homology.
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where B is the classifying space construction32. On the other hand, ho-
motopy classes of maps toK(A,n+1) are exactly elements ofHn+1(−;A).
Thus, these towers can be understood by understanding each τ≤nX and
each element

kn ∈ Hn+2(τ≤nX,πn+1(X))

is called the nth k-invariant of X.

(d) Show that if X is a product of Eilenberg-MacLane spaces, all its k-
invariants vanish.

(e) Let Y = Sn for n large enough, so that πn+1(S
n) = Z/2Z. (This is a

consequence of Freudenthal Suspension theorem and a computation of
π4(S

3).) Argue that the nth k-invariant kn ∈ Hn+2(τ≤nS
n;Z/2Z) must

be non-trivial. (Hint: Hn+1(S
n) does not equal Z/2Z.)

(f) By staring at the definition of QS0, conclude that the kn for Sn fit
together to define a single element k0 in the 2nd cohomology of the
spectrum HZ with coefficients in Z/2Z, and that k0 must be non-trivial.

(g) Conclude that QS0 cannot be homotopy equivalent to a product of
Eilenberg-MacLane spaces.

(h) Conclude that QS0, or any space homotopy equivalent to it, cannot be
given the structure of a topological abelian group.

II.21. The sphere spectrum as a ring rears its head

(a) Show that the endomorphism space homSp(S0,S0) is equivalent to the
0th space of the sphere spectrum, otherwise known as QS0.

(b) Show that the homotopy groups π∗QS0 ∼= π∗S0 form a graded abelian
group.

The space homSp(S0,S0) ≃ QS0 has two kinds of operations – one
is additive, by construction, and the other is “multiplicative,” by virtue
of being an endomorphism space.

(c) Show that composition of endomorphisms renders π∗S0 a graded ring.
(Hint: An element of πnQS0 is some map f : Sn+m → Sm, and an

element of πn′QS0 is some map f ′ : Sn′+m′ → Sm′
. By suspending, we

may assume m ≥ m′ + n′, and we may consider the composite

Σm−m′−n′
f ′ ◦ f : Sn+m → Sm = Sm′+n′+(m−m′−n′) → Sm′+(m−m′−n′).

This is a map of degree n + n′. So you can see pretty hands-on that
the sphere spectrum really is all about understanding homotopy classes
of maps between spheres, and only in the “stable range” where we have
suspended as many times as we want.)

32Such a construction exists for any E1-algebra in spaces; but here, you can take a
model for an Eilenberg-Maclane space as a simplicial abelian group to write down an even
more concrete model.
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Remark II.21.0.1. What is not yet obvious geometrically is that S is a
commutative ring; indeed, why should an endomorphism algebra be commu-
tative? Of course, once we know that S0 is the unit of a symmetric monoidal
structure, it follows formally that its endomorphisms is a commutative ring.

II.22. The graded ring of homotopy groups

Recall that for a differential graded algebra A, its cohomology groups
H∗(A) form a graded ring. In this exercise we will convince ourselves of the
following analogue for spectra:

Proposition II.22.0.1. Let R be a spectrum. Suppose that there exists
a map u : S → R (called a unit) and a map m : R ⊗ R → R (called
multiplication) which is associative up to homotopy. Then m induces the
structure of a graded unital ring on π∗R. If m is further commutative up to
homotopy, then π∗R is a graded commutative ring.

Corollary II.22.0.2. Let R, u,m be as above. Then for any i, πi(R)
is a bimodule over π0R.

Remark II.22.0.3. As you know, differential graded algebras A have far
more structure than that of H∗(A) – for example, Massey products. In a
similar way, ring spectra will have far more subtle invariants than just their
homotopy groups; but to define or detect such invariants, one must have
more structure than mere knowledge that m is associative up to homotopy,
or commutative up to homotopy. The data of the homotopies will be part
of the definition of a ring spectrum and commutative ring spectrum.

(a) Explain every map in the composition

hom(Si, R)× hom(Sj , R)
⊗−→ hom(Si ⊗ Sj , R⊗R)

≃ hom(Si+j , R⊗R)
m−→ hom(Si+j , R)

and explain how this composition defines a map πi(R)×πj(R)→ πi+j(R).
(b) Paying careful attention to the swap equivalence Si ⊗ Sj ≃ Sj ⊗ Si,

show that this product is graded commutative if m is commutative up
to homotopy.

(c) Recall that the natural map

X ⊗ Y ⊕X ′ ⊗ Y → (X ⊕X ′)⊗ Y

is an equivalence, since ⊗ preserves coproducts in each variable. Show
that for any triplet of maps a, b, c, the each square in the below diagram
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commutes up to homotopy:

Si+j ≃ Si ⊗ Sj
∆Si⊗id

//

∆

))

(Si ⊕ Si)⊗ Sj
(a⊕b)⊗c //

≃
��

(R⊕R)⊗R
+⊗id //

≃

((

R⊗R
m // R

Si ⊗ Sj ⊕ Si ⊗ Sj a⊗c⊕b⊗c // R⊗R⊕R⊗R
m⊕m // R⊕R

+

OO

Here, the maps ∆ are induced by suspended pinch maps (Exercise II.14),
or by shifts of pinch maps (if i, j are negative, for example). (Hint: the
coherence of the rightmost trapezoid requires also uses the universal
property of ⊕ to characterize maps out of R⊗R⊕R⊗R.)

(d) Prove the proposition.

II.23. A formula for computing the smash product

Here we present a riff on one classical model of smash product: The
“handicrafted” or “naive” smash product of Boardman, which Adams also
riffs on in his famous blue book33.

Given two prespectra X and Y , one can form a bigraded sequence of
spaces whose (i, j)th space is given by Xi ∧ Yj . The maps ΣXi → Xi+1

and ΣYj → Yj+1, by adjunction, defines a Z≥0 × Z≥0 diagram of spaces as
follows:

...
...

... . . .

Ω2(X0 ∧ Y2) //

OO

Ω3(X1 ∧ Y2) //

OO

Ω4(X2 ∧ Y2) //

OO

. . .

Ω(X0 ∧ Y1) //

OO

Ω2(X1 ∧ Y1) //

OO

Ω3(X2 ∧ Y1) //

OO

. . .

X0 ∧ Y0 //

OO

Ω(X1 ∧ Y0) //

OO

Ω2(X2 ∧ Y0) //

OO

. . .

Then the 0th space of the smash product spectrum is defined to be the
colimit of this Z≥0 × Z≥0 diagram. Likewise, there is a diagram defined
beginning with Xi ∧ Yj for i + j = n, and we can define the colimit of an
associated diagram as the nth space of the smash product spectrum. (For
example, remove the X0∧Y0 corner from the above diagram, and apply one
less Ω to each entry. The colimit of the resulting diagram is the 1st space
of the smash product spectrum.)

Using the above models, which of the following properties of the smash
product can you convince yourself of?

33See III.4 of “Stable homotopy and generalized homology” by J.F. Adams.
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(i) The smash product is associative. (Informally, for any triplet X,Y, Z
of spectra, X⊗(Y ⊗Z) ≃ (X⊗Y )⊗Z. Less informally, one would need
to provide such equivalences coherently for any k-tuple of spectra.)

(ii) The smash product is symmetric monoidal. (Informally,X⊗Y ≃ Y⊗X
for any two spectra X, Y . Less informally, one needs to exhibit such
equivalences coherently for any k-tuple, for any permutation, and in
conjunction with associativity.)

(iii) The sphere spectrum is the unit. (Informally, S ⊗ X ≃ X for any
spectrum X.)

(iv) Σ∞ is symmetric monoidal. (Informally, Σ∞(A∧B) ≃ Σ∞A⊗Σ∞B for
any two pointed spaces A,B. Less informally, one would have to prove
that Σ∞ can be equipped with many coherences making all relevant
diagrams homotopy coherent.)

Remark II.23.0.1. I have made parenthetical remarks throughout. The
biggest drawback of these lectures series is the omission of the definition
of symmetric monoidal ∞-categories, so we cannot make precise what the
above coherences are. But we hope the informal properties give the readers
enough confidence that something sensible is going on. Finally, let me assure
the reader that we do not write down all coherences by hand. One sets
up a theory in which many coherences are formally deducible from basic
properties of the ∞-category of spaces. (This is similar to the way in which
classical category theory is truly built up of basic properties about sets.) One
then compares to concrete models by arguing that the formal properties of
concrete models suffice to exhibit a universal property, showing that the
concrete models must indeed describe the formally deduced structures.

II.24. Another formula for smash product

(a) Recall the equivalence (II.16.1). Now, using the fact that Σ∞ is sym-
metric monoidal and preserves colimits in each variable, write a formula
for X ⊗ Y . (Your “formula” will write X ⊗ Y as a colimit of a diagram
indexed by pairs of natural numbers.)

(b) Write also a formula for a finite tuple of spectra (as a colimit indexed by
tuples of natural numbers). I encourage you not to write a formula for
something like X ⊗ (Y ⊗ (Z ⊗W )), but rather a formula for something
like X ⊗ Y ⊗ Z ⊗W .

(c) Using the above formulas, which of the following properties of the smash
product can you convince yourself of?
(i) The smash product is associative.
(ii) The smash product is symmetric monoidal.
(iii) The sphere spectrum is the unit.
(iv) Σ∞ is symmetric monoidal.
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II.25. Homology

We are positing the existence of a symmetric monoidal structure ⊗ on
Spectra. Let us at least give one consequence of this by giving a new con-
struction of homology. First, recall that HZ is the spectrum associated to
the integers (Definition I.4.0.7). Consider the following (seemingly arbitrary)
composition of functors:

Hi : Spaces∗
Σ∞
−−→ Spectra

⊗HZ−−−→ Spectra
πi−→ Ab.

Concretely, Hi takes a pointed space X to the group πi(Σ
∞X⊗HZ). In this

exercise, I want you to prove the following:

Proposition II.25.0.1. Hi is naturally equivalent to the reduced ho-
mology functor H̃i(−, ;Z) with coefficients in Z. That is, for any pointed
space X, there is an isomorphism

πi(Σ
∞X ⊗HZ) ∼= H̃i(X;Z).

(a) We will proceed by showing the collection {Hi}i≥0 satisfies the Eilenberg-
Steenrod axioms for reduced homology of CW complexes. Look those
up as a refresher, so you have some guidance for the strategy.

(b) In Spaces∗, consider those pointed spaces that are homotopy equivalent
to CW complexes, in which case the long exact sequence axiom only
needs to be checked for pushouts of spaces of the form B ∪A C where
A includes as a sub-CW-complex into B and C. Such a pushout is in
fact a homotopy pushout of spaces (you may take this for granted). Use
Exercise II.17 to prove that long exact sequence axiom is satisfied for
Hi.

(c) Show that the dimension axiom is satisfied – that is, show that Hi(S
0)

is isomorphic to Z when i = 0, and equal to 0 otherwise.
(d) Now suppose you have an infinite wedge sum ∨αXα of spaces. Because

Σ∞ preserves colimits, we have that Σ∞(∨αXα) ≃ ⊕αΣ
∞Xα, where the

latter is an infinite direct sum.34 It turns out that Ω∞ commutes with
infinite direct sums35. Using the fact that S0 is compact, show that

Hi(∨αXα) ∼= ⊕αHi(Xα).

Remark II.25.0.2. The same proof shows that for any abelian group A,
the functor X 7→ πiΣ

∞X ⊗ HA is isomorphic to reduced homology with
coefficients in A.

Remark II.25.0.3. If you want to recover the (unreduced) homology of
a space X, simply consider the space X+ := X

∐
∗ obtained by adjoining a

disjoint basepoint to X. Then Hi(X+) ∼= Hi(X).

34We use the “direct sum” notation again to analogize with abelian groups. It is still
just an infinite coproduct, if that means something to you.

35And more generally, with filtered colimits.
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Remark II.25.0.4. Of course, we have not yet proven that the isomor-
phisms are natural; they in fact are, but to prove the isomorphism, I would
have to read your mind about which model of reduced homology you prefer.

One of my favorite models is singular homology. One can prove that
the operation X 7→ H(C∗(X)), which takes a space and maps it to the
Eilenberg-Maclane spectrum associated to its singular chain complex, is
naturally equivalent to the operation X 7→ Σ∞X ⊗ HZ. Whatever nat-
ural equivalence one writes down to realize this will result in a proof that
the homology theories given by H and H̃ are equivalent.

So how would we go about proving this natural equivalence? While
we do not yet have the precise technology in this chapter to speak of the
following method precisely, allow me to explain it anyway.

The ∞-category of chain complexes is tensored over Spaces, because it
has all colimits. It turns out that the functor X 7→ C∗(X) can be modelled
as the functor

Spaces→ Chain, X 7→ colimX Z.
That is, one takes the colimit of the constant diagram X → Chain with value
Z. One often denotes colimX Z also as X ⊗ Z.

One can then prove that the Dold-Kan construction preserves colimits.
Thus the composite of X 7→ C∗(X)→ HC∗(X) can be expressed as

colimX HZ.
On the other hand, any pointed space X can be written tautologically as a
colimit of S0 indexed by the diagram X itself. Since Σ∞ preserves colimits
(being a left adjoint), we have that

Σ∞X ⊗HZ ≃ (colimX S)⊗HZ ≃ colimX(S⊗HZ) ≃ colimX HZ
where the middle equivalence follows from ⊗ respecting colimits in each
variable.

II.26. Cohomology

We’ve seen that we can recover the (reduced) homology of a pointed
space by smashing with an Eilenberg-Maclane spectrum.

Now let’s recover cohomology. Again, fix an abelian group A and a
topological spaceX. We will now study the spectrum of maps from Σ∞(X+)
to HA. In this problem, you will prove:

Proposition II.26.0.1. For every i ≥ 0, there exists an isomorphism of
abelian groups

(II.26.1) π−i homSpectra(Σ
∞(X+), HA) ∼= H i(X;A).

(a) Show that

π−i homSpectra(Σ
∞(X+), HA) ∼= π0 homSpaces∗(X+,Ω

∞(ΣiHA)).

(b) Show that Ω∞ΣiHA = Ω∞HA[i] is homotopy equivalent to the space

K(A, i).
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(c) It is a classical fact that the Eilenberg-Maclane space K(A, i) represents
ith cohomology with coefficients in A:

π0 homSpaces∗(X+,K(A, i)) ∼= π0 homSpaces(X,K(A, i)) ∼= H i(X;A).

So conclude your proof.

Remark II.26.0.2. As you know, if A is furthermore a commutative
ring, then H∗(X;A) has the structure of a graded commutative ring.

How does this play with the isomorphism (II.26.1)? In the coming lec-
tures, we will gain some familiarity with ring spectra, and we will see that
for any ring R, the Eilenberg-Maclane spectrum HR is rendered a ring spec-
trum. At the very least, such spectra will come equipped with the data of
maps

m : HR⊗HR→ HR

where ⊗ is the smash product of spectra. Because the smash product is a
symmetric monoidal structure on the∞-category of spectra, will have maps
(II.26.2)

hom(Y,HR)×hom(Y,HR)
⊗−→ hom(Y ⊗Y,HR⊗HR)

m−→ hom(Y ⊗Y,HR).

Now, when Y = Σ∞(X+) arises as the suspension spectrum of an unpointed
space X, we have the equivalence

(II.26.3) Y ⊗ Y ≃ Σ∞((X ×X)+)

because Σ∞ is a symmetric monoidal functor. But we of course have the
diagonal map X → X × X, which induces a map X+ → (X × X)+, and
hence a map

(II.26.4) Σ∞(X+)→ Σ∞((X ×X)+).

Pulling back along this suspended diagonal map, composition with (II.26.2)
and (II.26.3) induces a map
(II.26.5)

hom(Σ∞(X+), HR)× hom(Σ∞(X+), HR)→ hom(Σ∞(X+), HR).

And the ∞-category of spectra is enriched over itself (this was hinted at in
Exercise I.17); so this map of spaces actually lifts to a map of spectra

homS(Σ
∞(X+), HR)⊗ homS(Σ

∞(X+), HR)→ homS(Σ
∞(X+), HR).

It turns out that this map (with higher coherence data) renders homS(Σ
∞(X+), HR)

a ring spectrum.
It is also a fact that ring spectra define graded rings by passing to their

homotopy groups – see Exercise II.22. And when HR is commutative, or
E∞, this ring will be a graded commutative ring.

This is one manifestation of the graded commutative ring structure on
cohomology with coefficients in HR.

Remark II.26.0.3. For a reader who is not comfortable with the enrich-
ment of Spectra over itself, one may shift HR and compute π0 of both sides
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of (II.26.5) to witness that the homotopy groups (positive and negative) of
hom(Σ∞(X+), HR) indeed form a graded ring (commutative when R is).

II.27. Steenrod operations

We saw in the previous exercise that – for any abelian group A – the
homotopy groups of the mapping spectrum

homS(Σ
∞X+, HA)

define the cohomology groups of A. Let us note the following: the mapping
space homSpectra(HA,HA) has a product called composition. This turns out
to not be very interesting, but the mapping spectrum

homS(HA,HA)

also has a product called composition; this renders this mapping spectrum
an E1, or A∞-ring in spectra by formalities involving the enrichment of this
∞-category.

Thus, there is a natural action

homS(Σ
∞X,HA)⊗ homS(HA,HA)→ homS(Σ

∞X!, HA)

(a) Convince yourself that this action renders homS(Σ
∞X+, HA) a right

module over homS(HA,HA), at least up to homotopy.
(b) Just as rings in spectra give rise (via homotopy groups) to rings in graded

abelian groups, convince yourself that a module action of spectra gives
rise to a module action among graded abelian groups.

So what we have seen is that there is a graded ring (it is not commutative)

π∗ homS(HA,HA), ∗ ∈ Z
which acts on the graded abelian group

π∗ homS(Σ
∞X+, HA) ∼= H−∗(X).

Aren’t you dying to know what this amazing ring action is? When A = Fp,
these are the mod-p Steenrod operations on the cohomology of a space.
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Operads

I racked my brain a good deal about how much to include in this course.
My plan may be to teach you only about the classical definition of operads1.
While pedagogically this is clearly the right thing to do, it also pains me to
do so.

Why the pain? As we’ll see in the exercises, the usual definition of
operads actually suffer from the very problem they try to fix: They rely
on certain compositions being associative on the nose, and (more generally)
they ultimately rely on homotopy coherences being expressed through very
particular equalities.

If there is time, I might indicate an ∞-style definition of operads; i.e.,
∞-operads. This would be a do-or-die mission – I’d go for the gold, but
there’s a real chance of spectacular failure if time expires. The set-up for
this would require some model, and the most appealing (for pedagogical
purposes) would involve three new ideas – ∞-categories, the Grothendieck
construction (and Grothendieck fibrations in general; this corresponds to the
theory of co/Cartesian fibrations in simplicial language), and the category of
finite pointed sets2. There is also the theory of ∞-operads developed using
the language of dendroidal sets3. Who knows where these weeks will lead
us.

For now, let me say that operads as I present them here contain the seeds
of a “right way” to conceive of the ideas they are meant to capture, just as the
notion of associativity4 is certainly a right place to begin for us mere mortals
before we begin to understand associative-up-to-homotopy structures. Just
having the analogy of “associative versus associative-versus-homotopy” in
mind will give you a good feel of how more modern homotopical uses of
operads should go.

1Due to May, and with predecessors in work of Adams, Mac Lane, Boardmann and
Vogt.

2Relevant details are in Chapter 2 of Jacob Lurie’s Higher Algebra, which is available
on his website.

3The concept was introduced by Moerdijk and Weiss. As of this writing, it is a recent
announcement due to Moerdijk and Hinich that one can prove an (expected) equivalence
between the theory of ∞-operads due to Lurie and the theory of ∞-operads using den-
droidal set. Indeed, this is the most recent pre-print on the arXiv with Moerdijk as an
author (uploaded June 2022).

4I think it’s under-appreciated that whoever isolated “associativity” as an important
property of arithmetic operations advanced the field of mathematics greatly.

85
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Figure III.0.0.1. Even when the things we must do in two situations are
equivalent, additional structures can make one situation far easier than an-
other.

One final remark. There was a meme at one point (Figure III.0.0.1),
consisting of a side-by-side image of the end of two levels in Super Mario
Brothers. “Physically,” what one must accomplish in these two levels is
identical. Thus, the meme claimed, there is no difference in these two levels,
and the perceived difficulty of one over the other is “all psychological” (and
not “real”). But the perception of difficulty is real. What one level provides
– an array of blocks and lines to help frame the spatial relations between
targets – makes the level far easier to navigate than the other. In a similar
way, operads can provide lines that help us better understand our targets,
and improve the way in which we perceive the structures around us.

III.1. A motivating example: The En operad

Let me give an idea of what operads are supposed to encode, via example.
Recall that the n-fold loop space ΩnX is supposed to be a group that is

“commutative up to an (n − 1)-dimensional sphere.” In other words, each
time you try to write an equality of the form γγ′ = γ′γ, one must know that
this expression becomes ambiguous if we try to write it a sphere’s worth of
times.5 Thus, there seems to be some algebraic structure that is not quite

5This is analogous to the role of curvature in differential geometry. Covariant deriva-
tives do not commute, but each time you want to make them commute, you must sacrifice
a curvature term. Likewise, each time you pretend that two elements of ΩnX commute,
you can do so up to the cost of some higher-degree term, and the non-zeroness of this
term only becomes apparent if you try to integrate if over Sn−1.
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commutative, but not just associative. One would like a language for such
(and more general kinds of) algebraic structures.

The starting point is the realization that elements of ΩnX may be com-
posed in a space of standard ways.

Definition III.1.0.1 (Rectilinear embeddings). An embedding j : (0, 1)n →
(0, 1)n is called rectilinear if j(x) = Ax + v, where v ∈ (0, 1)n and A is a
diagonal matrix whose entries are positive real numbers.6

Given a finite disjoint union
∐

k(0, 1)
n of n-dimensional cubes, an em-

bedding j :
∐

k(0, 1)
n ↪→ (0, 1)n is called rectilinear is j is rectilinear on each

component of the domain.

Notation III.1.0.2 (En(k)). We let En(k) denote the space of all recti-
linear embeddings

∐
k(0, 1)

n ↪→ (0, 1)n.

Let’s fix n ≥ 0. (You can take n = 2 for concreteness, if you like.) You
will have the occasion to explore the spaces En(k) a bit in the exercises, so
let’s black box what they look like for a bit.

What occupies us now is that the collection of spaces En(0),En(1),En(2), . . .
admit extra structures that renders it an operad. These are the structures
of composition, and of symmetric group actions.

Construction III.1.0.3 (Symmetric group actions). For each k ≥ 0,
En(k) has an action by the symmetric group on k letters, by acting on the
connected components of

∐
k(0, 1)

n.

Construction III.1.0.4 (Composition). Fix an integer j ≥ 0, and fix
integers i1, . . . , ij ≥ 0. Then there is a map

(III.1.1) En(j)× (En(i1)× En(i2)× . . .× En(ij))→ En(i1 + . . .+ ij).

In words: if I have a single embedding of j medium cubes into a big cube,
and if for all 1 ≤ a ≤ j, I have an embedding of ia many small cubes into
the ath medium cube, I can compose all of these embeddings to obtain an
embedding of i1 + . . .+ ij many small cubes into the big cube.7

There should be a picture here. If you want to hand-draw a nice picture,
please let Hiro know and send it over.

Remark III.1.0.5. There is more to be said. For example, the compo-
sition map (III.1.1), as one varies j, i1, . . . , ij , are associative on the nose.
Likewise, the composition map is equivariant with respect to the Σj ×Σi1 ×

6One could also take A to simply be a real positive scalar; though the space of
such rectilinear embeddings is not homeomorphic to the one defined in the main text,
it is homotopy equivalent. We use the definition in the main text as it follows historical
convention, and it also includes the usual embeddings we use to define the group operations
of πn.

7The cubes (0, 1)n of course have the same size; but I hope the adjectives help more
than confuse.
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. . .× Σij actions on both domain and codomain. There are also two senses
in which these data have a unit.

For the sake of time, most of these properties – which are checks of
whether the data of Constructions III.1.0.3 and III.1.0.4 satisfy the prop-
erties, and not extra data – will be relegated to the exercises (if they are
covered at all).

III.2. Definition of operads and examples

Definition III.2.0.1 (Operads). An operad O is the data of

(1) For every integer k ≥ 0, a space O(k). We call this the k-ary
operation space of O.

(2) For every k, a continuous Σk action on O(k).
(3) For every integer j ≥ 0 and every collection of integers i1, . . . , ij ≥

0, a composition map

O(j)× O(i1)× . . .× O(ij)→ O(i1 + . . .+ ij).

These must satisfy associativity, equivariance, and unitality8 conditions that
were glossed over in Remark III.1.0.5.

Example III.2.0.2 (The little n-disks operad En). Fix n ≥ 0. Then the
spaces En(k), along with their symmetric group actions and composition
maps, form an operad. We denote this operad by En. It goes by the names
of the little n-cubes operad, the little n-disks operad, and the En-operad.

Example III.2.0.3 (The endomorphism operad). Let X be a topological
space. Then for every k ≥ 0, consider the space

EndX(k) := homSpaces(X × . . .×X,X)

where the product is taken k times. (When k = 0, X0 = ∅; hence EndX(0)
is a one-point space.) There is an obvious Σk-action on each EndX(k) given
by permuting the factors in Xk. Composition is defined by taking

(g : Xj → X, f1 : X
i1 → X, . . . , fj : X

ij → X) 7→ g ◦ (f1 × . . .× fj).

Thus, operads exist in abundance.
In fact, for any symmetric monoidal category, and for any such thing

where one can give a natural space enrichment (meaning the morphism sets
can be thought of as morphism spaces in a natural way) the endomorphism
operad is an operad in spaces.

Example III.2.0.4 (The commutative operad). We let Comm denote
the operad for which

Comm(k) := ∗

8Be aware that many people use operads that are not unital, just as many people study
and use algebras that are not unital; such non-unital things just show up sometimes.
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for any k ≥ 0. That is, this operad’s k-ary space is just (the space consisting
of) one point. This uniquely defines all the symmetric group and composi-
tion operations. We call this Comm the commutative operad; we’ll see why
soon.

Example III.2.0.5 (The E∞ operad). Note that for every n, k ≥ 0, we
have a natural map

En(k)→ En+1(k).

This map takes every embedding of n-dimensional cubes j and takes its
direct product with id[0,1], to obtain an embedding of (n + 1)-dimensional
cubes which “acts as the identity” on the (n+1)st coordinate. This map is
clearly continuous and equivariant with respect to the Σk action; I promise
it’s also straightforward to see that this defines a map of operads En → En+1.
As a result, we can conclude that the increasing union, also known as the
colimit spaces

E∞(k) := colim(E0(k)→ E1(k)→ E2(k)→ . . .)

assemble to form an operad in spaces. We call the resulting operad the E∞
operad.

Concretely, E∞(1) is the space of ways to embed the cube9 [0, 1]∞ into
itself in a rectilinear fashion. A rectilinear embedding is a map of the form

x 7→ Ax+ v

where A is a N × N diagonal matrix, all of whose entries are positive, and
only finitely many entries are non-1. v is a vector in [0, 1]∞. Likewise, E∞(k)
is the space of embeddings

[0, 1]∞
∐

. . .
∐

[0, 1]∞ → [0, 1]∞

which, on each component of the domain, is rectilinear.

Example III.2.0.6 (Operads in chain complexes, or other symmetric
monoidal categories). More generally, suppose we have some symmetric
monoidal category C⊗. For concreteness, we will assume C is the category
of chain complexes over a base ring R with symmetric monoidal structure
given by ⊗R.

Then an operad (of chain complexes) is the data of

(1) For every integer k ≥ 0, a chain complex O(k).
(2) For every k, a Σk action on O(k).
(3) For every integer j ≥ 0 and every collection of integers i1, . . . , ij ≥

0, a composition map

O(j)⊗R O(i1)⊗R . . .⊗R O(ij)→ O(i1 + . . .+ ij).

9This is not the Hilbert cube, in that this does not have the infinite-direct-product
topology. Rather, this is a subspace of the vector space R∞ ∼= ⊕NR. So an element of
[0, 1]∞ only has finitely many non-zero coordinates.
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These must satisfy associativity, equivariance, and unitality conditions.
An important example is the endomorphism operad for a chain complex.

When V is a chain complex, R is a base ring, then for any k ≥ 0, there is
a hom chain complex called hom(V ⊗Rk, V ). This is a far more interesting
object then, say, the operad in sets of chain maps V ⊗k → V .

In general, for any symmetric monoidal category C⊗ it makes sense to
say what an operad in C is. Note that for any C⊗ and any object X in C⊗,
the endomorphism operad of X is by default an operad in sets; but if C⊗ is
self-enriched10 then one can define a version of EndX as an operad in C⊗.

Example III.2.0.7. Suppose O is an operad in spaces. Then the singular
chains functor allows us to define an operad in chain complexes, which one
might denote by C∗O. Concretely, the k-ary operation complex

C∗(O)(k) := C∗(O(k))

is defined to be the singular chains on the space O(k). This complex inherits
an obvious symmetric group action, and the Eilenberg-Zilberg map11 induces
the composition maps. This construction produces an operad with singular
chains with coefficients in any base ring (where the output is an operad in
the category of chain complexes over that base ring).

As an example, the chains on the little disks operad C∗En defines an
operad in chain complexes. This operad is complicated in general, but when
the base ring is a field of characteristic 0, a famous theorem of Kontsevich
and Tamarkin asserts that it can be completely understood in terms of its
cohomology.

III.3. Algebras over operads

We motivated En by studying the space of ways in which one naturally
wants to compose elements in an n-fold loop space ΩnX. In fact, given the
(somewhat curated) examples of operads we have seen, it would be crazy of
us not to think about the following:

Construction III.3.0.1. For every element j of En(k), there is a map

ρj : Ω
nX × . . .× ΩnX → ΩnX

(where there are k copies of ΩnX in the domain). For example, Figure I.1.1.5
depicts this map for a particular j in the n = 2, k = 2 case. These maps
depend continuously on j, so we conclude there are continuous maps

ρ : En(k)→ homSpaces(Ω
nX × . . .× ΩnX,ΩnX), j 7→ ρj .

In other words, we have for every k ≥ 0, continuous maps

(III.3.1) En(k)→ EndΩnX(k).

10The chief example for us will be when C is the category of chain complexes over a
field k and the symmetric monoidal structure is ⊗k.

11For two spaces X and Y , this map is a quasi-isomorphism C∗(X) ⊗Z C∗(Y ) →
C∗(X × Y ).
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This looks very much like it ought to encode “a map of operads.” Any
good definition of an object in math should tell you what maps of such
objects respect. So if we believe that operads are defined well (they are),
we can take the hint: Whatever a map of operads is, it should respect
composition, units, and the symmetric group action.

Definition III.3.0.2. Let O and O′ be two operads. A map f : O→ O′

of operads is the data of continuous maps fk : O(k)→ O′(k) for every k ≥ 0,
such that fk is Σk-equivariant, and such that fk respects compositions and
units. To be explicit, “respecting composition” means that the diagram

O(j)× O(i1)× . . .× O(ij) //

��

O(i1 + . . .+ ij)

��
O′(j)× O′(i1)× . . .× O′(ij) // O′(i1 + . . .+ ij)

commutes on the nose.

Example III.3.0.3. The collection of maps (III.3.1) for k ≥ 0 is a map
of operads. For example, in the case k = 2, the map

ρ : En(2)→ homSpaces(Ω
nX × ΩnX,ΩnX), j 7→ ρj .

is in fact equivariant with respect to the swap map – given by Remark III.1.0.3
in the domain, and by swapping the factors of ΩnX ×Ωn X in the target of
ρ.

Remark III.3.0.4. You may have wondered where the symmetric group
actions become important or useful. Here you go: Whether the maps ρj
are “commutative” operations can be detected purely by understanding the
spaces En(2): Is the swap map of En(2) homotopic to the identity map of
En(2)? (Exercise: It is.) Then ρswap j is homotopic to ρj .

Our arguments from Lecture I about why n-fold loop spaces are “com-
mutative up to some spheres” were very universal. They applied to all n-fold
loop spaces, because at the end of the day our argument sonly depended on
configuration spaces of cubes in cubes. One reason this definition of oper-
ads makes us feel “good” is that the definition separates the structures in
a way commensurate with this philosophical reason for the “non-canonical
abelianness” of n-fold loop spaces.

And now we can give the definition which, in so many ways, motivates
the entire invention of operads.

Definition III.3.0.5 (Algebras over operads). Let O be an operad and
X an object in some symmetric monoidal category C⊗. Then an O-algebra
sturcture on X is a map of operads

O→ EndX .

When X is given a O-algebra structure, we say that X is an O-algebra.
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More generally, if O is an operad in a category V and C⊗ is a symmetric
monoidal V-enriched category, then a map of operads in V O → EndX is a
O-algebra structure on X.

Example III.3.0.6. You will see in the exercises that a Comm-algebra
structure on X is precisely a commutative algebra structure on X. In partic-
ular, if C⊗ is the category of vector spaces over a base field k with symmetric
monoidal structure ⊗k, then a Comm-algebra structure on X endows X with
a unital commutative product.

Example III.3.0.7. For any pointed topological space X, ΩnX is an
En-algebra. Note this is an example of a V-enriched notion, where V is
the category of spaces with symmetric monoidal structure given by direct
product.

Example III.3.0.8. In the exercises we will encounter an operad in vec-
tor spaces called the Lie operad, Lie. This is an operad that has no analogue
in sets or in spaces. As you might expect, a Lie-structure on a vector space
X is precisely a Lie algebra structure on X.

This is actually the first sign that (as you might already know) inter-
esting algebraic structure arise in the linear setting that do not arise in a
non-linear (e.g., set- or space-) setting.

Example III.3.0.9. If f : O→ P is a map of operads, then f gives a way
to think of any P-algebra as an O-algebra. For example, any En+1-algebra
is an En-algebra.

Remark III.3.0.10. You have seen in Kate’s talks operations between
vector spaces that do not only take k inputs and output one output; there are
natural operations (e.g., in string topology, and in other contexts) that take
in k inputs and output l outputs for l ≥ 1. Operads cannot not encode such
“multi-output” operations.12 An efficient language for encoding operations
allowing for multiple inputs and outputs is the language of PROPs, which
we won’t go into. (A PROPerad, which Kate also mentioned, is a special
case of PROPs.)

III.4. The issue with these definitions

How disconcerting would it be to have a lecturer give you a bunch of
definitions, then tell you they’re not good enough? Prepare to be discon-
certed.

Already in these lectures we’ve had a philosophy that homotopy equiv-
alence is equivalence. Let me give at least one way in which this principle is
violated by any theory of operads that relies naively on the definitions we’ve
given.

12Co-operads can encode multi-output operations, but only for 1 input; co-operads
help articulate things like associative coalgebras, for example.
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Example III.4.0.1 (Equivalence of operads does not give rise to an
equivalence on the collection of algebras). It is incredibly natural – and
correct – to say that a map of two operads in spaces

O→ P

is an equivalence (of operads in spaces) if the maps O(k)→ P(k) are homo-
topy equivalences for each k. As an example, consider the operad E∞. It
is known that each k-ary space of E∞ is contractible – see Exercise III.23.
Moreover, there is a map13

E∞ → Comm .

Because E∞(k) is contractible for every k, it must be that this map is an
equivalence.

Then, in any reasonable universe, one would expect that any E∞-algebra
should be an example of a commutative algebra. In other words, if any space
X admits a map of operads

E∞ → EndX ,

there must surely be some map of operads

Comm→ EndX

(because E∞ is equivalent to Comm). But it turns out that this simply
isn’t true. For example, the space QS0 (or any space homotopy equivalent
to it) cannot be given the structure of a commutative group in spaces (Ex-
ercise II.20). In contrast, QS0 – and any space arising as the 0th space
of a suspension spectrum – can be given the structure of an E∞ algebra
(Exercise III.24).

Indeed, even though we call E∞ → Comm an equivalence, there’s no
hope of having an inverse map, even up to homotopy. Every k-ary space
of Comm has a trivial Σk action. But the k-ary spaces of E∞ have free Σk

actions. A
To have any hope of having a good notion of equivalences compatible

with the notion of homotopy equivalence, we must have a homotopical notion
of “Σk-equivariant” to even have an inverse “map of operads.”

The underlying issue, of course, is a simple one. Throughout this theory
of operads – whether it be defining the composition structures, or in defin-
ing maps of operads – we demanded that certain commutative diagrams
are commutative on the nose. (This includes the “equivariance” condition,
which of course can be expressed as certain diagrams involving group actions
commute.) We demanded equalities.

I hope this, by now, feels unnatural. For example, suppose I asked you
whether a three-fold composition of loops is “equal.” Concretely: Take two

13In fact, there is a map from any operad O to Comm because Comm has trivial
operation spaces – see Exercise III.16.
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triplets of loops γi, γ
′
i : [0, 1]→ X all based at some x0. Does it make sense

for me to ask

“Does γ3♯γ2♯γ1 equal γ′3♯γ
′
2♯γ

′
1?”

Well, to even pose the question, you’d want me to specify how I’ve divided
up the interval [0, 1] to define the concatenation of three loops, but all along
you’d also know such a division would be an arbitrary choice. A far more
natural question would be to ask whether the triple compositions are ho-
motopic; and even better than a question, a good system for organizing
this data would be to specify all the reasonable/natural compositions and
remembering the various homotopies between them.

This is what the E1 operad succeeds in articulating, but what the defi-
nition of operads fails to incorporate. To put it in slightly vague terms, the
theory of operads lives over the idea of the associative operad, and not over
the idea of the E1 operad.14

Let me conclude the lecture by saying that we have ways of dealing with
these issues. A traditional way is to use the theory of model categories
– roughly speaking, you declare that there are “good” kinds of operads15

where equivalences behave well. A notable requirement for being good is for
the Σk actions to be free.

Another, more recent way is to reframe everything in the language of
∞-operads. This is similar to the way in which we secretly constructed a
satisfying framework for smash product using the language of∞-categories.
I might have you believe that adding “∞-” to everything solves all your
issues, but that is a linguistic con. The real solution to your issue is creating
an efficient system that encodes both the ability and the data to handle
homotopy coherences. The underlying strength of ∞-language is that we
have concrete, manageable combinatorial16 definitions of such ideas, and
these definitions turn out to be highly amenable to categorical applications.

Remark III.4.0.2. If you are knee-deep in the way that geometers use
A∞-algebras and A∞-categories, there is another big issue. The model that
you use for the A∞-operad is fine, but the definition that we give in this
talk for a map of A∞-algebras will not recover the notion of a map of A∞-
algebras. That is not your fault, of course, but these definitions’ fault.

14This can probably be made precise using the language of multicategories – we’d
prefer operads to model multicategories over E1, not over Ass. But we are still using
too-classical language to even articulate this notion. (The ideas are fine, the words are
clunky.)

15Once you choose a model structure on the category of operads, these are the operads
that are simultaneously cofibrant and fibrant.

16Just to give you an idea of the flavor of combinatorics, I will claim to you that
we could prove everything we have spoken about in these lectures without ever defining
the notion of a topology, so long as we understand that everything I call a “topological
space” is defined combinatorially, just as simplicial complexes can be described purely
combinatorially. This is the power of simplicial sets – Definition VI.2.0.8.
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In the setting of stable things (i.e., things with shifts) like chain com-
plexes and spectra, there is a toolkit called Koszul duality that actually give
a formal way to try and write formulas that give rise to “the right thing.”
In particular, it turns out that the map of A∞-algebras one uses in Floer
theory can be recovered as a map between Koszul dual coalgebras.

III.5. For next time

What did I do today? By analogy, I told you the notion of associativity,
and then concluded by telling you associativity-up-to-homotopical-data is
better. Literally, I told you about the definition of operads, and told you
why you should have in mind that more homotopically flexible notions are
better. I did not tell you how to define such more flexible things, but did
try to assure you of their existence.

Next time, I will stop ignoring the fact that this is a summer school
with “Floer” in the title. I will try to exposit some of the operads that show
up commonly, at least when studying Lagrangian Floer theory, or Reeb
dynamics, in a setting with no holomorphic spheres.

III.6. Historical success: Cohen’s computations (not covered in
lecture)

Fix a base ring, which we’ll assume to be a field to simplify some for-
mulas. Given an operad O in spaces, one can compute H∗(O(k)) for all k.
Then if A is an O-algebra, the maps

H∗(O(k))⊗H∗(A)⊗ . . .⊗H∗(A)→ H∗(A)

allows one to write down multilinear operations on the homology of A.
Assuming A is a space, one has a diagonal map A→ A× . . .×A which

is Σk equivariant with respect to the trivial action on the domain (and the
permuting action on the codomain). Thus, the composition

O(k)×A→ O(k)×A× . . .×A→ A

gives rise to interesting operations after computing equivariant homology
of the domain. (When O(k) has a free action by Σk – for example, when
O = En or E∞, note that the honest Σk quotient of the domain is already a
Borel construction for the domain.)

At the time, people understood that spectra (or, more concretely, the
0th spaces of spectra) allowed for operations on homology and cohomology
with lots of structure. It came to be understood, through a combination of
May and Boardman-Vogt’s works, that these operations arose from the fact
that infinite loop spaces have an action of E∞. So it was natural to look for
analogous structure in n-fold loop spaces – for their own right, and also to
potentially understand the behavior as n→∞ to better understand infinite
loop spaces.
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Remark III.6.0.1. There were predecessors of this idea; Kudo-Araki in
1956, and Dyer-Lashof in 1962 (all inspired by Steenrod’s operations). But
I must admit I am not at all an expert on this topic; I just thought it would
be good to tell you some of the ideas that were floating around at the time.
For context, the work of Cohen-Lada-May on this subject was published in
1976 as a book, so this was all happening as Adams was giving his Weyl
lectures at the IAS about infinite loop spaces. (We saw a quote from the
resulting book by Adams in Lecture I.)

Fred Cohen took on this task.
It is my understanding that Fred Cohen pioneered, and perhaps even

eliminated problems in, the field by providing tour-de-force computations
to understand these operations. Let me give an excerpt from his work in
Figure III.6.0.2. As suggested by his confident “This is the case,” he closed
the door on figuring out a satisfying way to organize these operations. He
opened the door to utilizing them.
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DOO� Q� DQG� S� LQ� ,9�� ,QGHHGa� DOO� RI� WKH� IRUPXODV� LQ� ,,,�� �������� DUH� H[��

SOLFLWO\� XVHG� WKHUH�� $� IXUWKHU� DSSOLFDWLRQ� RI� WKH� ILQH� VWUXFWXUH� LV� DQ� LPSURYH��

PHQW� >��@� RI� 6QDLWK
V� VWDEOH� GHFRPSRVLWLRQ� IRU� aQ�L]Q�,[� >��@��

:H� KDYH� WULHG� WR�SDUDOOHO� WKH� IRUPDW� RI� ,� DV� FORVHO\� DV� SRVVLEOHa� SRLQWLQJ�

RXW� HVVHQWLDO� GLIIHUHQFHV�� 6HFWLRQV� L��a� ZKLFK� DUH� DQDORJRXV� WR� ,�� La�a�a�

DQG� �� FRQWDLQ� WKH� FRPSXWDWLRQV� RI� +�aQ�OaQ�L[� DQG� +�&Q�,;a� Q� !� 2a� WRJHWKHU�

ZLWK� D� FDWDORJXH� RI� WKH� UHODWLRQV� DPRQJVW� WKH� RSHUDWLRQV��

,Q�PRUH� GHWDLOa� 6HFWLRQ� ,� JLYHV� D� OLVW� RI� WKH� FRPPXWDWLRQ� UHODWLRQV� EH��

WZHHQ� DOO� RI� WKH� RSHUDWLRQVa� FRSURGXFWa� SURGXFWa� DQG� EHWZHHQ� WKHP� DQG� WKH�

6WHHQURG� RSHUDWLRQVa� FRQMXJDWLRQa� DQG� KRPRORJ\� VXVSHQVLRQ�� 7KH� UHODWLRQVKLS�

EHWZHHQ� :KLWHKHDG� SURGXFWV� DQG� WKH� ;� LV� DOVR� GHVFULEHG��Q�
6HFWLRQ� �� FRQWDLQV� WKH� GHILQLWLRQ� RI� FHUWDLQ� DOJHEUDLF� VWUXFWXUHV� QDWXUDOO\�

VXJJHVWHG� E\� WKH� SUHFHGLQJ� VHFWLRQ�� WKH� IUHH� YHUVLRQV� RI� WKHVH� DOJHEUDLF� VWUXF��

WXUHV� DUH� FRQVWUXFWHG��

Figure III.6.0.2. Excerpt from Cohen, Frederick R.; Lada, Thomas J.; May,
J. Peter. The homology of iterated loop spaces. Lecture Notes in Mathe-
matics. 533. Berlin-Heidelberg-New York: Springer-Verlag. VII, 490 p.
(1976).
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III.7. Factorization homology (not covered in spoken lecture)

It turns out that the En operads allow for definitions that one can ar-
ticulate purely using smooth geometry of manifolds – see Exercise III.22.
One then understands that an En algebra A encodes data compatible with
various ways one can embed n-dimensional disks inside a smooth manifold
called Rn.

It is only natural to try to see if each such an algebra, then, has enough
data to understand how disks embed in other smooth n-dimensional mani-
folds.17

It turns out that by “integrating18 out” all such ways of embeddings disks
into a given manifold M , one obtains an invariant called the factorization
homology of M with coefficients in A. Because you have integrated over the
entire manifold, the resulting object has an action by all the diffeomorphisms
of M .19

For example, let A be an E1-algebra (your favorite example may be an
associative algebra, or an A∞-algebra). There aren’t many 1-manifolds to
consider. It turns out that the factorization homology∫

S1

A

of the circle with coefficients in A is precisely the “Hochschild homology
complex” of A.20 What’s more, the previous paragraph should convince you
that there is a natural circle action on Hochschild chains. If you were to use
a purely “chain-level” or algebraic model for everything, this circle action
takes some work to write down; but it is almost trivially manifest when
we set up this theory as in the previous paragraphs. See works of Francis,
Ayala-Francis, Lurie, and Ayala-Francis-Tanaka.

By now the theory has exploded to incorporate stratified manifolds of
various types, and promises to give a manifold-style framework for (∞, n)-
categories.21 It is typically a huge amount of painful work to fit geometric
structures into higher-categorical frameworks, so successes in this direction
are hugely desirable for many topologists. (If two of our main tools are
smooth manifolds and higher category theory, we would love to have an
efficient bridge to utilize both at the same time.) For example, such a

17Technically one must frame the manifold, but if one wants to understand manifolds
that aren’t framed, one could instead demand our En algebras have more structures; for
example, O(n)-actions compatible with the En algebra structure.

18That is, by taking an appropriate colimit indexed by the diagram of all possible
embeddings. This can also be phrased conveniently as a left Kan extension out of a
particular category of smooth manifolds.

19Or, framed diffeomorphisms.
20If A is an E1-algebra in chain complexes, this is true on the nose. There are

more general definitions of Hochschild homology that apply beyond the setting of chain
complexes, including in the setting of spectra.

21See David Ayala, John Francis, Nick Rozenblyum, “A stratified homotopy hypoth-
esis.” arXiv:1502.01713v4.
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framework may help establish deep theorems linking smooth topology to
higher algebra – a clear target at the moment is to attain a proof of the
cobordism hypothesis of Baez-Dolan, Lurie, and Hopkins-Lurie.
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Exercises about planar operads

These exercises deals with the definition of planar operad, which are
informally operads without symmetric group actions. Many features of op-
erads become to fix

III.7.1. Trees (for the sake of visualizing the associative con-
dition). To organize the combinatorics, let n = {1 < . . . < n} denote the
linearly ordered set with n elements. Every surjection p : n → m gives a
partition of n into m subsets. When discussing planar operads, we will also
only consider those p that respect order (so i ≤ j =⇒ p(i) ≤ p(j)).

Remark III.7.1.1. I encourage you to imagine m as a set of leaves of a
tree with one internal vertex (I will call this a corolla – a tree with only one
non-leaf, non-root vertex). The surjection p should be imagined as encoding
the data of a n-leafed corolla being split apart, then grafted onto the m-
leafed corolla. Equivalently, p yields the data of m disjoint trees, where the
ith tree has p−1(i) leaves; by grafting the ith tree onto the ith leaf of the
corolla with m leaves, one obtains a tree with n leaves; this tree is not a
corolla.

Remark III.7.1.2. Now imagine you have a composition of surjections

n
p−→ m

q−→ l. The process of the previous remark results in a tree with n
leaves, but there are two equivalent ways in which one could have created
this large tree. (I) By first creating m disjoint trees with the kth tree having
p−1(k) many leaves, as prescribed by p, then grafting the m trees together
by q; or (II) by first grafting trees as prescribed by q, then for each leaf
i ∈ m, grafting trees as prescribed by p. These give rise to the two maps
being compared in the associativity condition (i) below.

Remark III.7.1.3. Now consider a function p : n → m that need not
be surjective. When p−1(i) is empty, one should imagine that the ith leaf
is grafted to an “empty tree,” and as though the whole branch with the ith
leaf disappears. The end result of the grafting is still a tree with n leaves.

III.7.2. Definition and examples.

Definition III.7.2.1. A planar operad O (in sets) is the data of:

(a) (Sets of k-ary operations.) Sets O(k) for every integer k ≥ 0, and

101
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(b) (Composition maps.) For every (not necessarily surjective) order-respecting
function p : j → k, letting ji = #(p−1(i)), we have functions

γp : O(k)× O(j1)× O(j2)× . . .× O(jk)→ O(j).

We demand these satisfy the following associativity condition:

(i) For functions j
p−→ k

q−→ l, let us write p as a disjoint union of functions

p =
∐l

i=1 pi where pi = p|(qp)−1(i). We demand

γqp(idO(l) ×
l∏

i=1

γpi) = γp(γq × id).

Remark III.7.2.2. Let V be any monoidal category. (For example, vec-
tor spaces with tensor product, which is even symmetric monoidal.) Then
it makes sense to speak of planar operads in V, where each O(k) is an ob-
ject of V and we replace every instance of direct product with the monoidal
product.

Common instances include: the category of vector spaces with tensor
product over the base field, and the category of topological spaces with
direct product. Of course, these examples are symmetric monoidal. Here
is an example of a non-symmetric monoidal category: Fix an associative,
non-commutative ring R, and consider the category of R-bimodules. The
monoidal structure ⊗R is not symmetric monoidal.

III.8. The 1-ary space has an associative product

Given a planar operad O, show that O(1) is endowed with a (possibly
non-unital) associative binary operation.

Hint: When p = id1, γp defines the multiplication and (i) states the
multiplication is associative.

Example III.8.0.1. If V is the category of vector spaces over k, then
O(1) is some k-linear, possibly non-unital associative ring.

Remark III.8.0.2 (The 0-ary operations.). It is common to assume that
O(0) is the monoidal unit – so for an operad in sets, to assume O(0) is a
point, and for an operad in vector spaces, to assume O(0) is the base field.

In fact, it is also common to change the definition of “planar operad” to
not even require a 0-ary space of operations.

In all examples we see in this course, we will have that O(0) is the
monoidal unit, and that the composition maps γ∅→∅ are the natural isomor-
phism O(0)⊗ 1⊗ → O(0) (where 1⊗ is the monoidal unit).

III.9. Examples of planar operads

All the following examples can in fact be made into operads (not just
planar operads) but this exercise is meant to get you used to the non-
equivariance-related ingredients of an operad.
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(a) Let O(k) = Embfr(R
∐

k,R) be the collection of orientation-preserving
smooth, open embeddings of k disjoint copies of R into R. Endow the
collection O(k), k ≥ 0 with the structure of a planar operad. (In fact,
one can make this an operad.) Convince yourself it is a planar operad
in spaces – i.e., that your composition maps are continuous.

(b) Let V be the category of vector spaces and fix a vector space V . Then
we have the endomorphism planar operad, often denoted End. This has
k-ary operations given by

End(k) := hom(V ⊗k, V ).

The composition map takes a tuple

f ⊗ g1 ⊗⊗gk ∈ hom(V ⊗k, V )⊗ hom(V ⊗j1 , V )⊗ . . .⊗ hom(V ⊗jk , V )

and outputs the composition

f ◦ (g1 ⊗ . . .⊗ gk).

Show that this is a planar operad in vector spaces. (This planar operad
may in fact be promoted to an operad.)

(c) The endomorphism planar operad makes sense in any (not-necessarily-
symmetric) monoidal category. In fact, show that the first example
of this exercise is a planar endomorphism operad for some monoidal
category.

III.10. Unitality

There are secretly two ways in which operads can be unital. One has
to do with O(0), and the other has to do with specifying a distinguished
element in the space of 1-ary operations. This exercise deals with the latter.

Definition III.10.0.1. We say that a planar operad O in sets is unital
if

(a) there exists an element 1 ∈ O(1) satisfying the following conditions:
• For the map p : j → 1,

γp(1,−) = idO(j) .

• For p = id : j → j,

γid(−, 1, 1, . . . , 1) = idO(j) .

More generally, a planar operad in a monoidal category V is unital if there
exists a map

u : 1⊗ → O(1)

(where the domain is the monoidal unit of V) for which

γp ◦ (u⊗ idO(j)) = idO(j) and γidj ◦ (idO(j)⊗u⊗ . . .⊗ u) = idO(j) .

(a) Show that if a planar operad is unital, then the unit 1 ∈ O(1) is unique.
This follows from Exercise III.8 and the usual proof that units of monoids
are unique.
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(b) In our examples above, show that there is the identity map id ∈ Embfr(R,R)
and id ∈ hom(V, V ).

III.11. Maps of planar operads

Definition III.11.0.1. Let O and P be planar operads in sets. A map
of planar operads from O to P is the data of maps

fk : O(k)→ P(k), k ≥ 0

so that for every function p : j → k, we have

fj1+...+jk(γp) = γp ◦ (fk × fj1 × . . .× fjk).

f is further a map of unital planar operads if f1(1) = 1.

(a) Show there is a terminal planar operad in sets for which O(k) = ∗ for all
k. This is the planar associative operad. (For O to be terminal means
that, for any other planar operad O′, there exists a unique map of planar
operads from O′ to O.)

(b) Show the planar associative operad is terminal with or without the de-
mand for unitality.

(c) Suppose O is the planar associative operad, and let EndM be the en-
domorphism planar operad of some set M . Show that a map of uni-
tal planar operads O → EndM precisely encodes an associative algebra
structure on M . This explains why we call the terminal planar operad
associative.

Remark III.11.0.2. Let R be a ring and M an abelian group. Recall
that the data of a left R-module structure on M is equivalent to the data
of a ring homomorphism

R→ End(M)

to the set of abelian group endomorphisms. Note that, to utilize this def-
inition of a module, we need to know what the ring structure on End(M)
is.

Exercise III.11 witnesses an analogous situation for operads. Given a
planar operad O, it seems that a natural notion of an “O-algebra” is encoded
by a map of planar operads

O→ EndM .

However, a diligent exploration shows that there is not enough structure in
the planar endomorphism operad to ever know whether a map from some
operad P detects a commutative algebra structure on M . This motivates
the notion of a symmetric operad, or operad for short.
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We have seen that planar operads have the potential to encode algebraic
structures, but failed to encode commutative structures in a natural way.
This was probably recognized quite early on – precursors to Peter May’s
operads (including Adams and Mac Lane’s PROPs22) all incorporated sym-
metric group actions.

To emphasize the symmetric group actions, what we are about to define
is often called a “symmetric operad.” But we view this notion as the basic
notion, so we simply call the following an operad, just as May did in his
original work23. Of course one should compare this with Definition III.7.2.1.

Definition III.11.0.3 (Operads). A symmetric operad in sets, or operad
in sets, is the data of

(a) For each n ≥ 0, a set O(n) with a right action by the symmetric group
Σn on O(n), and

(b) For every (not necessarily order-respecting, not necessarily surjective)
function p : j → k, a composition map

γp : O(k)×
k∏

i=1

O(ji)→ O(j).

We demand

(i) that these satisfy the same associativity condition as in Definition III.7.2.1 (i),
and

(ii) that each γp is equivariant in the following sense: For every σ ∈ Σk,
we have an equality

(III.11.1) σ̃ ◦ γσ◦p ◦ (idO(k)×σ∏k
i=1 O(ji)

) = γp ◦ (σ × id∏k
i=1 O(ji)

).

Further, for any tuple of τi ∈ Σji , we demand that

(III.11.2) γp(idO(k)×
k∏

i=1

τi) = (
k∏

i=1

τi) ◦ γp.

22Saunders MacLane, “Categorical algebra,” Bull. Amer. Math. Soc. 71 (1965),
40-106. DOI https://doi.org/10.1090/S0002-9904-1965-11234-4. See Chapter
V.

23J. P. May, The Geometry of Iterated Loop Spaces, Lecture Notes in Mathematics.
Springer-Verlag Berlin Heidelberg 1972. A free and TeXed version is available on Peter’s
website.
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On the righthand side,
∏k

i=1 τi denotes the obvious element of Σj .

Notation III.11.0.4. Let us explain the notation in Condition (ii).
First, σ̃ is a bijection of j to itself; we define it as the unique bijection

satisfying p ◦ σ̃ = σ ◦ p and for which the restriction of σ̃ to a fiber p−1(i)
is order-preserving as a map to j. In the equality (III.11.1), σ̃ (by abuse of
notation) is also the map O(j) → O(j) given by the action of Σj supplied
by (a).

Second, σ∏k
i=1 O(ji)

is the isomorphism

k∏
i=1

O(ji)
∼=−→ O(j1)×. . .×O(jk)

∼=−→ O(jσ−1(1))×. . .×O(jσ−1(k))
∼=−→

k∏
i=1

O(jσ−1(i))

supplied by the symmetric monoidal structure of direct product with sets.
Finally, we note that the abuse of notation – denoting σ for both a

symmetric group element and the induced automorphism of O(k) – may
result in some confusion in (III.11.2), which we now seek to undo. On the

righthand side,
∏k

i=1 τi is an element of Σj , while on the lefthand side, one
has the map

O(j1)× . . .× O(jk)
τ1×...×τk−−−−−−→ O(j1)× . . .× O(jk).

Before we go any further, let us put for the record:

Definition III.11.0.5. Let O and P be operads. Then a map of operads
is the data, for every k ≥ 0, of a function fk : O(k) → P(k) that respects
composition, and which is Σk-equivariant.

Remark III.11.0.6 (Unitality). By imposing the same conditions as in
the planar case, one obtains definitions of unital operad, and map of unital
operads.

Definition III.11.0.7. An (unital) algebra over an operad O is the data
of an object V together with a unital map of operads O→ EndV .

Given such data, we say V is an O-algebra.

III.12. Symmetric sequences

Let Σ denote the category whose objects are finite sets and whose mor-
phisms are bijections. There is of course an equivalence Σ ∼= Σop, but we
will take care and declare a symmetric sequence in a category C to be a
functor

Σop → C,

meaning a symmetric sequence is determined by the data of objects X(n) for
all n ≥ 0, equipped with a right Σ0 action. We let CΣ denote the category
of symmetric sequences (where morphisms are natural transformations). If
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C has colimits and a symmetric monoidal structure ⊗ preserving colimits in
each variable, one has a not symmetric monoidal structure ◦ on CΣ, where

(X◦Y )(n) =
⊕
k≥1

⊕
n1+...+nk=n

X(k)⊗Σk
(Y (n1)⊗ . . .⊗ Y (nk))⊗Σn1×...×Σnk

k[Σn].

(a) Show that an operad in C is the same thing as an associative monoid in
CΣ (with respect to the composition product ◦).

III.13. From planar to symmetric

There is a forgetful functor from operads to planar operads, which forgets
the symmetric group actions. Show that there is a left adjoint. Or, just
convince yourself that there is a natural way to upgrade any planar operad
to a symmetric operad (do not just give things the trivial Σk actions).

III.14. Examples of operads: Endomorphism operad

Let V be a symmetric monoidal category, and fix an object V . We let
EndV denote the operad where the k-ary operation space is given by

EndV (k) := hom(V ⊗k, V )

with the obvious right symmetric group action. (Given σ ∈ Σk, we use
the symmetric monoidal structure of V to permute the factors V ⊗k ∼= V ⊗k.
This defines a left action on V ⊗k, hence a right action on hom(V ⊗k,W ) for
any target W .) The composition maps are, as in the planar operad case,
composition maps.

(a) Elucidate the equivariance condition in this setting to show that EndV is
a (symmetric) operad when V is the category of sets with direct product,
and V is just a set.

For concreteness, if you want, you can just take V to be the category
of sets with direct product and following along the work here: Fix

g : V ×k → V, fi : V
×ji → V, i = 1, . . . , k.

Then both sides of first equivariance condition (III.11.1), applied to the
tuple (g, f1, . . . , fk), equal

g ◦ (fσ−1(1) × . . .× fσ−1(k)).

Let us work out the lefthand side of (III.11.1) for the reader’s conve-
nience: (

σ̃ ◦ γσ◦p ◦ (idO(k)×σ∏k
i=1 O(ji)

)
)
(g, f1, . . . , fk)

= (σ̃ ◦ γσ◦p) (g, fσ−1(1), . . . , fσ−1(k))

= σ̃(g ◦ (f1 × . . .× fk))

= g ◦ (fσ−1(1) × . . .× fσ−1(k))
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(b) Recall from Example III.2.0.6 that the endomorphism operad for a chain
complex is an operad (in chain complexes). Elucidate the equivariance
condition in this setting when V is the category of chain complexes over
a field k, and ⊗k is the symmetric monoidal structure. I am very sorry
to say that I want you to be conscious of signs. You will also need to
dust off the definition of the hom-cochain complex.

III.15. Examples of operads: The associative operad

For every integer k ≥ 0, fix a set of cardinality k. We let Ass be the
operad whose k-ary space is the set of all possible linear orderings on the
set of cardinality k. (This is a set with a free Σk action.) Composition

Ass(k)×Ass(j1)× . . .×Ass(jk)→ Ass(j1 + . . .+ jk)

is given by inducing the lexicographic ordering.
One should interpret the freeness of the symmetric actions as saying:

The operations that a map out of Ass picks out are completely determined
by knowing what one element of Ass(k) picks out (by using the equivariance
condition), with no conditions on how the operation behaves when inputs
are permuted.

(a) Letting EndV be the endomorphism operad of a set V , show that a unital
map of operads Ass → EndV precisely specifies an associative monoid
structure on V .

(b) Formulate what the “associative operad in vector spaces” should be,
with the goal that your answer should classify (unital) associative alge-
bra structures. (That is, for any vector space V a map of operads from
your answer to EndV should precisely endow V with a unital associative
algebra structure.)

(Hint: The k-ary space should be the free vector space generated by
the set Ass(k). A non-canonical way to think about this vector space is
as the group ring on the symmetric group on k letters.)

III.16. Examples of operads: The commutative operad

We let Comm be the operad whose k-ary spaces are all a single point,
endowed with the trivial Σk action. We caution the reader that this has the
same “underlying k-ary operation space” as the planar associative operad,
but it is most definitely not the(symmetric) associative operad.

(a) Show that Comm is the terminal operad, meaning any other operad has
a unique operad map to Comm.

(b) Letting EndV be the endomorphism operad of a set V , show that a
unital map of operads Comm→ EndV precisely specifies a commutative
monoid structure on V .

(c) Conclude that for any operad in sets O, and for any commutative unital
monoid V , V has a canonical O-algebra structure. (As a sanity check,
you should consider the case that O is the associative operad.)



D
ra
ft

III.19. VERSIONS OF OPERADS IN SETS 109

(d) Formulate what the “commutative operad in vector spaces” should be,
with the goal that your answer should classify (unital) commutative
algebra structures.

(e) Is the commutative operad in vector spaces the terminal operad (in
vector spaces)?

III.17. Non-examples

There are many kinds of algebraic structures that have no operad. So
for example, the theory of operads is not at all equivalent to the theory of
“model theory” that logicians like.

(a) Show that there is no operad in sets whose algebras are groups.
(b) Show that there is no operad in abelian groups whose algebras are fields.

III.18. When the tensor is a coproduct

Suppose that C⊗ is a symmetric monoidal category where ⊗ is given by
coproduct. An example would be C = Ab the category of abelian groups
with direct sum as the monoidal structure, or C = Sets the category of sets
with disjoint union.

(a) Show that for any object V ∈ C, there is a unique map from the com-
mutative operad to the endomorphism operad of V .

III.19. Versions of operads in sets

Things like vector spaces and abelian groups have “underlying sets,”
which are the images under the forgetul functor to Sets. As you have seen,
we have a left adjoint to forgetting called “the free construction,” which takes
a set to a free vector space, or to a free abelian group. And in all linear
settings, the free construction further can be made symmetric monoidal, so
that it takes direct products of sets to the relevant ⊗ on your linear gadgets
(e.g., ⊗Z for abelian groups, or ⊗k for vector fields with base field k). For
concreteness, we’ll choose a base field k in this exercise.

(a) Suppose C⊗ the category of k-vector spaces with symmetric monoidal
structure given by ⊗k. Convince yourself that any operad in C⊗ in fact
defines an operad in sets, by forgetting the linear structure. In fact,
there is a forgetful functor from operads in C⊗ to operads in sets.

(b) Using the free functor Sets→ C, construct (or argue there exists) a left
adjoint to the forgetful functor from the previous part. In case it helps,
for an operad O in sets, the induced operad in vector spaces should have
j-ary operation space given by the k-vector space generated by the set
O(j).

The most important part of this exercise is to understand that if O
is an operad in sets, and P is an operad in C⊗, then a map of operads
of sets

O→ P
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precisely gives a map of operads in C⊗ with target P, and with domain
the operad induced by O.

(c) When C⊗ is the category of k-vector spaces with tensor product ⊗k,
show that the “induced operad” generated by Comm is the commutative
operad in vector spaces that you made earlier. Or, you can do this for
Ass instead.

(d) When P = EndV for some vector space V , consider P as an operad in
sets. (So P(j) is the set of linear homomorphisms V ⊗ . . . ⊗ V → V .)
Convince yourself that a map of operads (in sets) from Comm to P

indeed gives a (unital) commutative algebra structure on V .
(e) In general, if C⊗ is just a symmetric monoidal category, its hom sets are

just sets. So for any object V , the endomorphism operad is an operad
in sets.

Remark III.19.0.1. In instances where we are talking about operads in
chain complexes, or in spectra, we still have a forgetful functor to spaces.24

The same yoga as in this exercise works to take any operad in spaces to
produce an operad in chain complexes, or in spectra.25 And in particular,
to give a spectrum V a commutative algebra structure, it will suffice to
give a “map of operads” from the space-level commutative operad to the
endomorphism operad of the spectrum. I utilize quotes because I’m being
coy about what the correct notion of what a map of operads ought to be.

Remark III.19.0.2. What’s interesting is that there are operads that
do not arise as being induced from operads in sets. An example is the Lie
operad Lie for vector spaces, where an algebra over Lie is exactly a Lie
algebra.

III.20. Maps of algebras

Fix an operad O in spaces, and two O-algebras A and B (in spaces, for
concreteness). We did not discuss in the lectures what a map of O-algebras
from A to B is.

(a) Formulate what you believe to be a reasonable definition. You can
be as unsophisticated as you like – for example, you can say that a
map of algebras is a single continuous map f : A → B satisfying some
properties. What properties should it satisfy?

I wouldn’t recommend getting too much more sophisticated than
this. If you’ve heeded the warnings from lecture, you know that this

24If you haven’t seen the construction for chain complexes, let me at least give you
something to look up: The Dold-Kan correspondence. This takes a chain complex to a
simplicial Abelian group, and the underlying simplicial set (forgetting the abelian group
structure) defines a space.

25We saw already how we can take C∗O(j) of any topological operad O; for an operad
in spectra, we can take Σ∞(O(j)+) .
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unsophisticated definition has to be wrong somehow to handle all ho-
motopically interesting phenomena. But that’s okay, because things will
work out for the purposes of this exercise.

(b) Let f : X → Y be a continuous map. Show that Ωf : ΩX → ΩY is a
map of E1-algebras.

(c) Recall that there is a map E1 → E2 of operads. On the other hand,
suppose you have a map f : X → ΩY and you consider the induced
map Ωf : ΩX → Ω2Y . We have the intuition that Ωf ought to be a
map of E1 groups, but Ω2Y is an E2-group. How does this play with
the map E1 → E2?

Warning III.20.0.1. I promise it was a good exercise to try to define
what a map of O-algebras is. But let me warn you that (for example) using
your definition26, if you take the example of O = A∞ as an operad in chain
complexes, a map of A∞-algebras would not be the usual definition of the
map of A∞-algebras.

26Unless you knew some tricks like utilizing Koszul duality
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Exercises on E1,En,E∞

III.21. En using configuration spaces

(a) For every k, n ≥ 0, show that En(k) is homotopy equivalent to the
configuration space of k ordered points in Rn.

(b) Show that En(k)/Σk is homotopy equivalent to the configuration space
of k unordered points in Rn.

(c) Explain why the homology of En(k)/Σk computes the Σk-equivariant
homology of En(k) correctly (e.g., as though you used the Borel con-
struction).

(d) In the case n = ∞, which well-known algebraic invariant of the group
Σk does the homology of E∞(k)/Σk compute?

III.22. En using smooth manifolds

Let X be a smooth manifold. A framing of X is a trivialization of the
tangent bundle.

Let X and Y be two smooth, framed manifolds of the same dimension.
A framed embedding from X to Y is the data of (i) A C∞ embedding j :
X → Y , and (ii) a homotopy of the framing of X to the pulled-back framing
induced by j.27

(a) Fix the standard framing on Rn. For every k, n ≥ 0, convince yourself
that En(k) is homotopy equivalent to the space of framed embeddings
of
∐

k Rn into Rn.

III.23. The E∞ operad

(a) Prove that for every k ≥ 0, E∞(k) is contractible. (Hint: Forgetting a
cube gives a continuous map from E∞(k) to E∞(k − 1). The hard part
is showing that this is a fibration, which you might ignore for sake of

27Homotopy-theoretically, it is healthy to think of a framing of X as a homotopy-
nullification of the map X → BO(n) classifying the tangent bundle of X. (Here, n =
dimX.) In other words, a framing is a homotopy making the diagram

∗

��
X //

;;

BO(n)

commute. Then a framed embedding also carries the data of a homotopy between the
nullification of X, and the nullification induced by j.

113
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expediency. Now try to think through why the fibers have vanishing
homotopy groups.)

(b) Show that the E∞ operad is equivalent to Comm (as operads in spaces).

III.24. Suspension spectra give rise to E∞-algebras

(a) Let X be a pointed topological space. Using the model of Ω∞Σ∞X
(also known as QX) as an honest increasing union, explain why QX is
an algebra over the E∞-operad. (Hint: The map ΩΣX → Ω2Σ2X is
modeled as Ω of the map ΣX → ΩΣ(ΣX). It may also help to look at
later parts of Exercise III.20.)

(b) Let Y be any spectrum. Try to give Y0 the structure of an E∞ algebra.
What is an additional complication that distinguishes your efforts from
the previous problem?

(c) For some time, Peter May considered sequences of spaces Yi together

with homeomorphisms Yi
∼=−→ ΩYi+1. (Such spectra are sometimes called

May spectra28.) Why does this help with the issue you encountered in
the previous problem?

Remark III.24.0.1. From this exercise, you can see how suspension spec-
tra, and May spectra, could have felt so right. Our notions of composition
(expressed through commutativity of diagrams) demanded equalities (in our
definitions of operads, and of algebras over operads). This strictness hand-
cuffs us.

Being an E∞-algebra in spaces is very different from being a commu-
tative algebra in spaces. For example, QS0 is an E∞-algebra by the above
exercise, but it cannot be made into a topological abelian group (Exer-
cise II.20).

III.25. Stasheff polytopes (a very particular model of the planar
A∞-operad)

In a healthy mathematical universe, both the associative andA∞-operads
should be considered manifestly equivalent. This is because both operads
have n-ary operations spaces on which Σn acts freely and transitively on con-
nected components, and where each connected component is contractible.
More concretely, any operad called an A∞ operad should have an evident
map to Ass exhibiting an equivalence. It is an artifact of history that Ass
and A∞ are treated differently (and in fact, many modern homotopy-theorist
will dispose of any distinction). I think it’s fair to say that, historically, the

28But for us, we might as well treat this as a non-detectable condition. We want
to embrace a philosophy where the only equivalence is a homotopy equivalence, and in
particular, we should recognize that the notion of homeomorphism is a notion particular
to the model of spaces, and not articulable in any truly homotopical model of homotopy
theory.
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two operads were treated differently only because the correct notion of the
space of “maps of operads” was very slow to develop.

Regardless, some models of the A∞ operad are surprisingly effective and
convenient. Here we’ll explore a little of the Stasheff associahedron model,
to see how the algebraic A∞-relations (which are themselves consequences
of an arbitrary/particular model for the A∞-operad) are derived from the
Stasheff associahedron model.

Definition III.25.0.1 (Corollas). For us, a corolla is a planar rooted
tree whose only vertices are leaves and a root. So for every k ≥ 1, there is
exactly one corolla with k leaves. The k = 1 corolla is just a vertex; the
k = 2 corolla is a planar rooted tree with three vertices, two of which point
to the third; the k = 3 corolla is a directed planar tree whose three leaves
point to the root; and so forth.

Definition III.25.0.2 (Stasheff polyhedra, informally). We will define
the kth Stasheff associahedron inductively. For each k ≥ 0, we define a
topological space Kk called the kth associahedron, as follows:

For k = 0, 1, 2, the kth Stasheff associahedron is a point. You should
think of the k = 2 case as saying that there is a unique binary planar rooted
tree with no 1-ary (1-ary means one-input and one-output) vertices. This
unique binary planar rooted tree is the corolla.

For each k (and I recommend you begin by following along for k = 3)
one can construct a topological space called ∂(Kk) as follows: Note that
every planar rooted tree T with k leaves and with no 1-ary vertices, is either
a corolla or a concatenation/grafting of corollas Tα. And for every corolla
Tα making up T with kα leaves, by induction we have already defined the
kα associahedron Kkα . We define

∂(Kk) :=
⋃
T

(∏
Tα

Kkα

)

where the union runs over the collection of non-corolla planar rooted trees
T with no 1-ary vertices and with k leaves; as for the direct product, for
each corolla Tα in T with kα leaves, we have a factor consisting of the
kαth Stasheff polyhedron. The union is not a disjoint union; there is an
anodyne/harmless gluing procedure whose intuition will be come accessible
as you work out some examples.

Finally, it turns out one can prove that ∂(Kk) is homeomorphic to a
sphere of dimension (k − 3). We define Kk to be the CW complex (homeo-
morphic to a disk) obtained by attaching a (k − 2)-dimensional disk to this
boundary sphere along a choice of homeomorphism.

Remark III.25.0.3. This is a non-ideal definition, in that induction is
always difficult to work with, and the gluing procedure is annoying to write
out. The above definition certainly makes any universal property completely
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inaccessible. Hiro’s favorite definition of the associahedra, which isn’t writ-
ten up anywhere published, is as a nerve of a category of certain tree posets.
If you ask Hiro he’d be happy to send you a draft of something describing
this definition.

(a) Draw the associahedra for k = 2, 3, 4. You should get a point, a line
interval, and a pentagon. (This is the same pentagon, philosophically,
appearing in MacLane’s pentagon for monoidal categories.)

(b) By virtue of the inductive definition, each Kk is a CW complex. More-
over, once you (arbitrarily) orient the k = 3 case, you can induce an
orientation for all Kk. (Work out the k = 4 pentagon’s orientation,
paying attention to the boundary.)

Writing the degree k−2 generator of the top cell of Kk as mk, write
out the cellular chain complex for k = 2, 3, 4.

(c) Convince yourself that the Kk form a planar operad in spaces. Convince
yourself that the cellular chains of Kk (after choosing orientations if
your base ring R is not characteristic 2) form a planar operad in chain
complexes.

(d) Suppose there is an operad in spaces whose k-ary space is given by
Kk. Letting V be a cochain complex, write out what it means for you
to have a map of chain complexes – from the cellular chains of Kk to
hom(V ⊗kk, V ) – for the case k = 2, 3, 4. Compare to the A∞ relations
for m2,m3,m4.

(Some points of caution: Most people take cohomological grading
in the A∞ world, so it will behoove you to think of the cellular chain
complexes concentrated in non-negative degrees as a cochain complex
concentrated in non-positive degrees. And, if you are wondering where
all the m1 terms in the A∞-relations show up, make sure to remember
what the differential on a hom complex is.)

III.26. Equivalent models of the E1 operad, also known as the
A∞-operad

. For every one of the following operads, exhibit an equivalence of oper-
ads to Ass.

(a) Let O(k) = Embfr(R
∐

k,R) be the collection of orientation-preserving
smooth, open embeddings of k disjoint copies of R into R. Endow the
collection O(k), k ≥ 0 with the structure of a planar operad. (In fact,
one can make this an operad.) Convince yourself it is a planar operad
in spaces – i.e., that your composition maps are continuous.

(b) The E1 operad.
(c) The operad defined using the free symmetric operad given by the Stash-

eff polyhedra as a planar operad. See Exercises III.25 and III.13
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III.27. Lie Operad

Fix a base ring k. (You can use any base ring if you want, but be careful
in characteristic 2.) Look up, or construct, the operad Lie in R-modules
– verify that your definition is correct by showing that a Lie-algebra in
R-modules is precisely a Lie algebra whose bracket is R-bilinear.

III.28. Poisson Operad

Fix a base ring k. (You can use any base ring if you want, but be careful
in characteristic 2.)

Recall that a Poisson algebra over k is the data of:

(i) A k-module A,
(ii) A commutative unital algebra structure on A (where the product is

k-bilinear), and
(iii) A Lie algebra structure {−,−} on A (for which the bracket is k-

bilinear),

such that For every a ∈ A, the bracket [a,−] is a derivation for multiplication
on A. That is,

{a, bc} = {a, b}c+ b{a, c}.
Look up, or construct, the operad Poisson in R-modules – verify that your
definition is correct by showing that a Poisson-algebra in R-modules is pre-
cisely a Poisson algebra over R.
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LECTURE IV

Ways operads show up in Floer theory: A∞
relations

Where to begin? Operads show up everywhere in this game, and oper-

ads help us organize structures. In fact, I’ll state a conjecture1 very much
motivated by some facts we can deduce from theorems about operads – so
the organizational power of operads helps us motivate future directions. The
two main examples I’d like to cover are the following: (i) How one model of
the A∞, or E1, operad shows up when studying holomorphic disks, and (ii)
How a framed version of the E2 operad shows up when studying Riemann
surfaces with k (marked) inputs and 1 (marked) output.

Convention IV.0.0.1. In this talk, every tree is planar (the leaves have
a linear ordering), rooted (there is a specified root that is not a leaf – this
directs the tree), and stable. Informally, stability means that a vertex of a
tree is either a root, a leaf, or a point where at least 3 edges come together
– that is, each non-leaf, non-root vertex has at least 2 incoming edges and
exactly one outgoing edge.

Warning IV.0.0.2. Everything about this lecture concerns chain com-
plexes. As a result, we have fixed a base ring R and each instance of ⊗ in
this lecture is to be interpreted as ⊗R. This is in violation of the conven-
tions from Week One, when ⊗ always meant ⊗S – i.e., the smash product
of spectra.

Let me also remark that the tensor product of choice for complexes of
R-modules should always be the derived tensor product ⊗L

R. But this will be
immaterial for us – in this lecture, and in almost all set-ups of Floer theory,
the chain complexes we consider will be generated by free R-modules, and
hence flat.

IV.1. (One very popular model of) the A∞ operad

First, let me tell you that A∞ and E1 are synonyms. They describe
exactly the same notion (of associativity up to higher and higher specific
homotopy), and you should keep the example of ΩX as the main example

1As far as I know, it’s still a conjecture
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of an object with an A∞-algebra structure. I want to emphasize that this
isn’t a theorem; it’s a piece of vocabulary.2

But there is one model of the planar A∞ operad that is so popular
that this particular model has come to be called “the” A∞ operad in many
communities. This is the model utilizing what are commonly called the
Stasheff associahedra. If you play a lot with chain complexes (like a lot of
people using Fukaya categories), “the” A∞-operad is the one you obtain by
constructing a particular oriented cellular decomposition (and hence cellular
chain complex) on the associahedra.

IV.1.1. Stasheff associahedra. You’ve already seen the Stasheff as-
sociahedra in the talks of Catherine and Nate. These are usually presented
as K2 is a point, K3 is an interval, K4 is a pentagon, followed by some
promises to the reader that generalizations encoding higher versions exist.
These promises hold true, but if you were to wonder how exactly to realize
these promises yourself, you would be justified – it’s not easy.

The big picture to keep in mind is:
The kth Stasheff associahedron Kk is the space of (planar,

rooted, stable) metric trees with k leaves. The collection Kk, k ≥ 0
has an operad structure given by grafting trees.

For those interested, let me show you Stasheff’s original writings in Fig-
ures IV.1.1.1 and IV.1.1.2, to show how non-trivial it is to set things up.
This isn’t to intimidate you, but again to illustrate that progress is grad-
ual and slow, and we are lucky to live in times which organize things with
the advantage of hindsight. I hope you’ll do the same and organize the
structures that seem confusing to us today.

2The A in A∞ stands for “associativity.” The E in En is supposed to stand for
“everything,” which was supposed to mean “associative and commutative.” So an En

algebra was meant to encapsulate something that is both homotopy and commutative, but
up to some obstruction presented in dimension n, as we’ve already seen. Unfortunately,
when n = 1, there is no commutativity at all, so the etymology of “everything” is a bit
misleading. By the way, let me tell you that being associative and commutative certainly
isn’t everything; but as we’ve seen, it is at the very least terminal in the theory of operads.
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Figure IV.1.1.1. Excerpt 1. James Dillon Stasheff, “Homotopy Associa-
tivity of H-Spaces. I.” Transactions of the American Mathematical Society
Vol. 108, No. 2 (Aug., 1963), pp. 275-292.
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Figure IV.1.1.2. Excerpt 2. James Dillon Stasheff, “Homotopy Associa-
tivity of H-Spaces. I.” Transactions of the American Mathematical Society
Vol. 108, No. 2 (Aug., 1963), pp. 275-292.
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Stasheff’s implication about who his readers were and would be does not
withstand the test of time. (It also probably failed the test of truth in his
own time.)

Returning to our thread, let’s recognize that Stasheff himself says that
the “only” intuitive reason for the indexing he has is through the notion
of parenthesizing variables. This is very satisfying from the perspective of
what associativity does capture (relating different parenthesizations); but
somewhat clunky to formalize. Let’s also look at his drawing of K4; it is
highly non-symmetric, and the “pentagonal” structure only becomes visible
after marking an edge. This is evidence that it’s hard for members of the
community to see good ways to organize things when we first see them.

Remark IV.1.1.3. This is part of a theme in math; often, the most
natural way to discover an idea is not the most natural way to organize or
describe the thing you discover. If I get to where I want to get to in this
lecture, I might be able to describe why this is true for the most common
definition of the Fukaya category.

Remark IV.1.1.4. The “presentation” of this 1963 paper occurred in
1959; May’s book on geometry of iterated loop spaces didn’t come out until
1972. You can see that 10 years of hindsight, with help from people with a
talent for vision or for hard work, can improve greatly the way a community
views something. (Keep that in mind if you look over these notes in 10
years.)

Anyhow, back to our main narrative. I am going to follow the trend of
hand-waving the definition of Stasheff associahedra in the spoken lecture.
See the rest of the written notes for my favorite model. The examples we
will keep in mind are still

K2
∼= ∗, K3

∼= [0, 1], K4
∼= pengaton.

As a reminder, K2 is the “space” of ways a planar tree with two incoming
vertices and one root can deform. One thinks of this as just a point. K3 is
the space of ways in which you can deform planar trees with three incoming
vertices (and one root). This is an interval.

Obligatory picture here.
You should think of a deformation of a tree as given by changing the

length of internal edges from 0 (i.e., the edge collapses) to ∞ (the maximal
length an edge is allowed to be), inclusive.

Likewise, Kn is the space of n-incoming-vertices planar trees. K4 is a
pentagon.

Remark IV.1.1.5. For n ≥ 2, each Kn is homeomorphic to a (n − 2)-
dimensional disk. One can think of the center of this disk as the corolla with
n leaves – i.e., a tree with no internal edges.

Obligatory picture here.
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IV.1.2. The operadic structure and the product-boundary ob-
servation. Let’s see some of the operad structure because I want to make
a point. Suppose you have an element

(S, T1, . . . , Tl) ∈ Kl ×Kj1 × . . .Kjl .

That is, S is a tree with l leaves, and the Ti are trees with ji leaves. Because
there are l such Ti trees, we can graft3 these trees to the leaves of S to obtain
a new tree, which we denote by

S ◦ (T1, . . . , Tl) ∈ Kj1+...+jl .

There is one non-obvious element to this grafting. When the ith tree Ti

has 2 or more leaves (i.e., when ji ≥ 2), the root of Ti becomes a vertex in
S ◦ (T1, . . . , Tl) that has an internal edge emanating from it. We declare the
length of this internal edge to be ∞ in defining ◦.

Warning IV.1.2.1. Here, it’s important that K1 = ∗ has a unique ele-
ment we think of as “degenerate trees with no edges” where the leaf is the
root. We also think of K0 = ∗ as a black hole “tree”; when we graft it to a
leaf, the leaf (and the edge emanating from it) vanishes entirely.

Pictures of composed trees
The point I want to make is that the composition of (non-0-ary and non-

1-ary) trees always has at least one internal edge of length∞. In other words,
the non-trivial operad compositions always have image in the boundary of an
associahedron. (The interior of the associahedron only parametrizes trees
with internal edges having finite length.) And in fact, in a way we can make
precise, the boundary of an associahedron is covered exactly by all possible
compositions.

In other words, the way that Stasheff defined Kn as a cone on the the
union of a bunch of products is compatible with the operad structure itself;
so you can flip his definition on its head: Kn is defined inductively by
freely writing possible compositions (to obtain ∂Kn), then declaring there
is exactly one way to homotope them all (by coning off ∂Kn).

IV.1.3. Cellular chains on the associahedra. Now, let me make
just two choices: An orientation for K2 (i.e., a plus or a minus sign to
associated to a point), along with a sign convention equivalent to the Koszul
sign rule that I will not get into.

It is a lemma that these two choices alone are enough to orient each Kn

coherently. In particular, we can define a cellular chain complex over Z. By
abuse of notation, I will write C∗(Kn) for these chain complexes.

Example IV.1.3.1. Let’s spell out the cellular chain complex in some
easy examples. I use the base ring Z; if you want a different base ring,
change every instance of Z to your base ring R.

3This means we identify the root of Ti with the ith leaf of S. But, depending on the
model of tree you take – some people want there to be exactly one edge entering a root –
this means identifying the root edge of Ti with the ith leaf edge of S.
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(1) We have C∗(K0) ∼= C∗(K1) ∼= Z.
(2) C∗(K2) ∼= Z, a chain complex concentrated in degree 0. (This is

the cellular chain complex of a point.)
(3) C∗(K3) ∼= (Z→ Z⊕Z), a chain complex of rank 1 in degree 1, and

rank 2 in degree 0. One can think of the differential as a 7→ (a,−a)
after appropriate orientation of the edge and the boundary vertices
of K3.

(4) C∗(K4) is congruent to a chain complex of rank 1 in degree 2 (cor-
responding to the single pentagonal face), of rank 5 in degree 1
(corresponding to the 5 edges of the pentagon), and of rank 5 in
degree 0 (corresponding to the 5 vertices of the pentagon).

It follows from Stasheff’s inductive definition, and the fact that the glu-
ing of boundary strata is nice, that the operad composition maps are cellular.
(This is a non-trivial property.) In particular, the collection

C∗(Kn), n ≥ 0

forms an operad in chain complexes.

Remark IV.1.3.2. That the collection C∗(Kn) form an operad in chain
complexes would be immediate if C∗ were singular chains; I emphasize in-
stead that these are cellular chains for a particular cell decomposition of Kn.
This is what makes this operad in chain complexes so small.

Remark IV.1.3.3. The Stasheff associahedra are some mysterious look-
ing planar operad in spaces; but by definition, each Kn is contractible.
(Stasheff defines Kn as a cone, after all.) In particular, the unique map
from this planar operad to the terminal planar operad – otherwise known
as Ass (as a planar operad) – is an equivalence. So you should rest assured
knowing that whatever operad the Statsheff associahedra encode, they en-
code algebras that are associative up to homotopy. Or, by taking the free
(symmetric) operad on the associahedra, again the map to Ass (as an op-
erad) will be an equivalence of operads. The same is true of E1, so indeed
both the operad of associahedra and the E1-operad are equivalent (to the
associative operad).

Definition IV.1.3.4 (A particular definition of the A∞-operad in chain
complexes). We say that the planar operad {C∗(Kk)}k≥0, with composition
induced by the planar operad structure on {Kk}k≥0, is “the” A∞-operad (in
chain complexes). We will denote it by

A∞(k) := C∗(Kk).

Warning IV.1.3.5. This is a planar operad, not an operad. Also, “the”
is a bit presumptuous because there are many planar operads equivalent to
this model, and many deserve to be called A∞. But this particular cellular
model has proven remarkably useful for formulas, so please let it slide.
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We will see in Section IV.3 how this particular model recovers the “usual”
formulas for A∞-algebras in chain complexes that most algebraists and sym-
plectic geometers use.

IV.2. The compactification of the moduli of disks

Compactifications are choices. The Gromov compactness theorem (ref-
erenced in Catherine and Nate’s talks) tells us that – for analytic reasons –
there is a natural compactification of moduli of disks to consider.

Let’s be slightly more concrete. Σ be the unit disk, but with k + 1
boundary points removed. This Σ inherits a complex structure (as a complex
manifold with real analytic boundary) fromD2, the usual unit disk. Inherent
in our notation will also be a distinguished boundary marked point z0 among
the k + 1 points we removed; think of this as the “outgoing non-compact
boundary” of Σ.

For historical reasons and to relate to the associahedra, we will consider
the cases4 k ≥ 2 from here on.

There is a (k + 1)-dimensional space of choices of k + 1 marked points
on a circle. On the other hand, the holomorphic automorphism space of D2

is PSL(2,R) – three-dimensional. So the moduli of Σ obtained by removing
k + 1 marked points is (k − 2)-dimensional.

Notation IV.2.0.1. We let

Rk+1

denote the moduli of holomorphic manifolds (with analytic boundary) ob-
tained by removing k + 1 boundary marked points from D2. (This follows
the notation of Seidel’s book5, except the k + 1 is a superscript there.)

Remark IV.2.0.2. It is not hard to see that Rk+1 is an open manifold –
Exercise ??. Indeed, to see that Rk+1 is not compact, you could imagine that
two of the marked points collide, or worse yet, that N marked all approach
the same point on the unit circle at various rates.

The usual Gromov compactification tells us to do the following: Let us
create a stratum in our compactification for what happens when a group
of points are actually allowed to collide – or, from another perspective,
“run off to infinity” with respect to all other points. In this stratum will
be some moduli of nodal disks – that is, holomorphic disks

⋃
αDα, each

equipped with kα ≥ 1 incoming marked points and one outgoing marked
points, together with an identification of the outgoing vertices of some of
the Dα with incoming vertices of some Dα′ . (This description is a bit vague;

4It is a pleasant surprise (unwritten and unpublished work of Lurie-Tanaka) that
when you include the k = 1 case, the resulting stack classifies planar operads.

5Paul Seidel, Fukaya Categories and Picard-Lefschetz Theory (Zurich Lectures in
Advanced Mathematics). European Mathematical Society (EMS) 2008.
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you might see how to make the description more precise later in the lecture.)
We interpret this as a codimension 1 stratum.

Concretely, what if some consecutive collection of points zi, . . . , zi+j –
with6 j ≥ 1 – all become “farther and farther away” from all other points?
(You could interpret this as the cross ratio of zi−1, zi, zi+j , zi+j+1 going to
infinity.) We introduce a stratum wherein an element is a pair of disks; one
disk labeled by points

z0, . . . , zi−1, w, zi+j+1, . . . , zk

and the other disk labeled by points

w, zi, . . . , zi+j

where, as indicated, we consider these two disks as glued along w.
We need a picture, though a reader could certainly draw this picture on

their own.
We repeat this process to create higher and higher codimension strata,

until we construct the codimension k − 2 strata (hence all 0-dimensional
corner strata). Though this description is vague, we set:

Notation IV.2.0.3 (The compactified moduli space of disks with bound-
ary punctures). We let

Rk+1

denote the compactification of Rk+1 just described.

Remark IV.2.0.4. I want to be honest with you that I have only de-
scribed the set Rk+1. The topology is a bit more subtle to pin down. Indeed,
many works just tell you what convergent sequences are in this space, and
such a definition forces you to be beholden to using sequences in every ar-
gument.

Finally, there is an operadic structure on the collection of spaces Rk+1,
given by gluing disks along marked points to produce nodal disks with
boundary marked points.

Picture.

IV.2.1. The isomorphism of moduli spaces. The following is the
main hint that the symplectic study of holomorphic disks outputs A∞-
structures for chain complexes7. If visualizing either of Kk or Rk+1 was
difficult, this theorem allows you to pick your favorite.

Theorem IV.2.1.1. For every k ≥ 2, there exists a homeomorphism

Rk+1 → Kk

to the kth Stasheff associahedron.

6This j ≥ 1 condition is, as it turns out for enriching spectra over Floer theory,
incredibly unnatural.

7For spectra, both Rk+1 and Kk should be replaced by appropriate stacks that see
moduli stacks of broken strips on the holomorphic side, and of broken trees on the other.
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Moreover, one can choose these homeomorphisms to be maps of planar
operads.

Remark IV.2.1.2. The only way in which we will use the theorem is to
convert the algebra of degenerating disks into mk operations at the chain
level. Strictly speaking, one could have had this entire discussion with-
out the Stasheff associahedra, but that’s like teaching you about modes of
transportation without teaching you that we have bicycles.

IV.3. The A∞-relations

IV.3.1. A∞-categories. Before we go on: We have talked about the
notion of algebras over operads. It turns out there is a notion of a category
over an operad, as well. Let me hand-wave the definition. Throughout, I
will cut through the set-examples and go straight to the context of vector
spaces, and more generally chain complexes.

Roughly speaking, what does it mean to give a vector space V the struc-
ture of an O-algebra? The most important data are: For every element
x ∈ O(k), a k-linear map

mx : V ⊗ . . .⊗ V → V.

For the mx to define an algebra structure, we just need to check some prop-
erties.8

Remark IV.3.1.1. To generalize this definition from “algebra” to “cate-
gory,” the (often unhelpful) slogan is that a category is just an algebra with
one object. So in what follows, make sure to consider the case when the
collection of objects {Xα} is just a one-element set containing one thing,
which we’ll call X. Then the endomorphism space of X plays the role of V
above.

Now, given a collection of objects {Xα} and a collection of vector spaces
Vα,β associated to each pair of objects, one could ask for the data

mα1,...,αk
x : Vαk−1,αk

⊗ . . .⊗ Vα0,α1 → Vα0,αk
.

Interpreting each Vα,α′ as a “collection of morphisms” from Xα to Xα′ ,
each mx could thus be thought of as a formula for a k-fold composition of
morphisms.

Example IV.3.1.2. For k = 2, an element x ∈ O(2), for every triplet of
objects X0, X1, X2, defines a map

mα1,...,αk
x : V1,2 ⊗ V0,1 → V0,2.

Concretely, given elements fi,j ∈ Vi,j , one might write this as

f1,2 ⊗ f0,1 7→ f1,2 ◦x f0,1
where ◦x shoudl be thought of as a “composition” of the two morphisms
f0,1, f1,2, but a particular composition determined by x.

8This is using the definition of operads we have given in the previous lecture.
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Definition IV.3.1.3 (Sketch). Fix an operad O in chain complexes over
R (or vector spaces, or sets).9 An O-category is the data of

(a) A collection of objects {Xα},
(b) For each pair α, α′, a chain complex Vα,α′ over R (or vector space, or

set)
(c) For every k + 1-tuple of objects X0, . . . , Xk, a map

O(k)→ hom(Vk−1,k ⊗ . . .⊗ V0,1, V0,k)

of chain complexes over R (or of vector spaces, or of sets).

These data are required to satisfy some composition and unit relations I do
not spell out.

The only example we’ll be interested in is when O = A∞ is the particular
model fo the A∞ planar operad in chain complexes (Definition IV.1.3.4).
You will want to refer to at least the generators of the chain complex as
described in Example IV.1.3.1.

So let’s spell out what it means to give an A∞-category C. We first fix
a collection of objections, and some chain complexes VX,Y for every pair of
objects X,Y . For the Fukaya category – say, in the exact and Calabi-Yau
setting – our objects are Lagrangians equipped with tangential structures.
The chain complex VL,L′ = CF ∗(L,L′) is the Floer complex. We ignore
transversality issues when L and L′ are not transverse, to focus on the
algebra.

Let us now study the maps

(IV.3.1) A∞(k)→ hom(Vk−1,k ⊗ . . .⊗ V0,1, V0,k)

for every k + 1 tuple of objects X0, . . . , Xk.

Example IV.3.1.4 (k=0). For every object X, we have a map

(IV.3.2) A∞(0) ∼= R→ hom(R, VX,X) ∼= VX,X .

The last isomorphism follows because we are looking at R-linear maps from
R into the R-chain complex VX,X . You should think of this map as picking
out a unit R → VX,X for the endomorphisms of X – that is, the image of
1 ∈ R picks out the identity morphism of X. Note that (IV.3.2) is a map of
chain complexes; thus it follows that the identity morphism of X is a closed
element of the chain complex VX,X .

Example IV.3.1.5 (k=1). For every ordered pair of objects X,Y , we
have a map

A∞(1) ∼= R→ hom(VX,Y , VX,Y ).

The unit axiom for a map of operads will force us to choose this map to
pick out exactly the identity map of VX,Y ; you should think of this as no
structure to worry about for the moment.

9You may as well take O to be planar, as the definition will only depend on the planar
structure of O; i.e., you can forget the symmetric group actions.
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Example IV.3.1.6 (k=2). For every ordered triplet of objects X,Y, Z,
we have a map

A∞(2) ∼= R→ hom(VY,Z ⊗ VX,Y , VX,Z).

You should think of this as picking out exactly one composition map. For
example, if you have fY,Z ∈ VY,Z and fX,Y ∈ VX,Y , the image of 1 ∈ R picks
out a map, which is traditionally called m2:

fY,Z ⊗ fX,Y 7→ m2(fY,Z , fX,Y ).

Note that m2 depends on X,Y, Z, but we remove it from the notation to
reduce clutter.

Now, if m2 were a composition that is associative on the nose, for every
quadruple of objects X0, . . . , X3 we would desire an equation like

(IV.3.3) m2(m2 ⊗ id) = m2(id⊗m2).

Remark IV.3.1.7. Note that (IV.3.3) is an equation of elements in the
hom cochain complex

(IV.3.4) hom(VX2,X3 ⊗ VX1,X2 ⊗ VX0,X1 , VX0,X3).

Make sure you understand this point.

However, if Mother Nature were to obstruct you and give you an m2 that
is not associative, but only associative up to chain homotopy, what would
you expect? You would expect that there is some degree 1 element H (H
for homotopy) for which

(IV.3.5) δH = m2(m2 ⊗ id)−m2(id⊗m2).

This is an equation inside the chain complex (IV.3.4). Lo and be hold, we
will find exactly this by analyzing the k = 3 case.

Example IV.3.1.8 (k=3). For every ordered quadruple X0, X1, . . . , X3,
let’s denote Vi,j = VXi,Xj because Hiro is lazy and space is precious. If C is
to be an A∞-category, we have a map

(IV.3.6) A∞(3)→ hom(V2,3 ⊗ V1,2 ⊗ V0,1, V0,3).

Recall from Example IV.1.3.1 and the Definition of A∞ (Definition ??) that
A∞(3) is a chain complex with two degree 0 generators, and a single degree
1 generator (using homologial grading, not cohomological). The differential
is the usual differential realizing two points (corresponding to the degree
0 generators) as the signed boundary of an oriented edge (the degree 1
generator).

By examining the composition maps

A∞(2)⊗A∞(2)⊗A∞(1)→ A∞(3)

and

A∞(2)⊗A∞(1)⊗A∞(2)→ A∞(3)



D
ra
ft

IV.3. THE A∞-RELATIONS 133

(which, at the level of K3, represent the two different three-leaved trees that
are not corolla), the map (IV.3.6) must pick out exactly the elements

m2(m2 ⊗ id) and −m2(id⊗m2).

(This utilizes a sign convention; you might end up with a different sign –
you are fine so long as the two operators appear with opposite signs.)

And indeed, the degree 1 element of A∞(3) picks out exactly an element
H as in (IV.3.5). We see (IV.3.5) is obtained by noting that (IV.3.6) is a
chain map.

We want to pick a less ad-hoc notation than “H”.

Notation IV.3.1.9 (mk). We letm3 denote the image of the 1-dimensional
oriented generator of A∞(3). More generally, we let

mk

denote the image of the oriented top-dimensional (i.e., degree k−2) generator
of A∞(k) under the map (IV.3.1).

So Example IV.3.1.8 tells us that

δm3 = m2(m2 ⊗ id)−m2(id⊗m2)

inside the cochain complex

hom(V2,3 ⊗ V1,2 ⊗ V0,1, V0,3).

Unwinding the definition of the differential δ of this hom complex, we find

m
V0,3

1 m3+m3(m1⊗id⊗ id)−m3(id⊗m1⊗id)+m3(id⊗ id⊗m1) = m2(m2⊗id)−m2(id⊗m2).

Re-writing every term onto one side, we find the usual A∞ relation for k = 3:

(IV.3.7) 0 =
∑

a+b+c=k

(−)some signsma+1+c(id
⊗a⊗mb ⊗ id⊗c).

And if you plug in elements of the Vi,j , writing fi,j ∈ Vi,j we find the formula

0 =m1m3(f23, f12, f01)

±m3(m1f23, f12, f01)±m3(f23,m1f12, f01)±m3(f23, f12,m1f01)

±m2(m2(f23, f12), f01)±m2(f23,m2(f12, f01))

where the ± are signs I am not working out here.
It’s up to you whether you like what I just went through. I tried to con-

cretely write out the formulas that everybody writes, but from first principles
– to assure you that the formulas have origins and the origins are articulable
using concrete ideas.

But now, we can unwind the definition of what it means to be an A∞-
algebra in chain complexes, to arrive at the following (which you have prob-
ably seen before):

Definition IV.3.1.10 (A∞-category). An A∞ category (in chain com-
plexes) is the data of
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(a) A collection {Lα} which we will call a collection of objects. Each element
Lα of this collection will be called an object.

(b) For every ordered pair of objects L0, L1, a chain complex VL0,L1 . As a
matter of notation, we will write the differential of this chain complex
as m1.

(c) For every ordered (k + 1)-tuple of objects L0, . . . , Lk, and operation

mk : Vk−1,k ⊗ . . .⊗ V1,2 ⊗ V0,1 → V0,k[k − 2]

(of degree k − 2, as indicated,

where these data are required to satisfy the so-called A∞ relations (IV.3.7).
There are various unit conditions one could require of this data, which

we do not spell out.

IV.4. Why did Hiro spend time spelling out what an
A∞-category is?

The reason is that, modulo details, the Fukaya category of a symplectic
manifold is an A∞-category. There are various geometric caveats:

• If certain obstructions involving 2c1(TM), and the det2 maps for
Lagrangians, do not vanish, then the Fukaya category is not Z-
graded, but is Z/nZ-graded. One way to think of a Z/nZ-graded
complex is as a single complex equipped with an equivalence from
itself to its degree n shift,
• If certain obstructions do not vanish, the Fukaya category may be
linear over one base ring, but not another. This has to do with
being able to orient moduli spaces.
• If the areas of disks matter (e.g., if counts of disks do not converge
unless we only count disks of a given area at a time) then the Fukaya
category is linear over the Novikov ring. If you can ignore areas
of disks (e.g., in the exact case with nice behavior at infinity) then
you can also ignore the Novikov variable and work over your base
ring R.
• If your Lagrangians bound holomorphic disks, then the Fukaya cat-
egory is a curved A∞-category meaning it has a m0 term. The
“right” philospphical way to think about such a thing is as a recep-
tacle for deformation problems. It turns out that you can try to
solve a certain algebraic deformation problem for every Lagrangian,
and when you can, you’ll get a well-defined A∞-cateogry spanned
by Lagrangians that admit a “uniform” solution to this deformation
problem.

We ignore these caveats. As a general rule, if ω = dθ and if the only
Lagrangians you consider are those with [θ|L] = 0 ∈ H1(L), then you can
more or less assume that the Fukaya category is an A∞-category in the sense
of Definition IV.3.1.10.
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IV.5. Verifying the A∞-relations in the Fukaya category

So why should the geometry of Lagrangians, and the way that disks can
have boundary on tuples of Lagrangians, even have any kind of algebraic
structure (e.g., that of an A∞-category)?

The most efficient but hand-wavy answer is “We’ve already seen that
the moduli of disks define the A∞ operad.”

It is also a misleading answer. When we prove the A∞-relations, we
will be forced to examine not just the way that disks degenerate as in the
Stasheff associahedra (which involve no strips), but we must also study the
appearance of strips (i.e., disks with only two boundary marked points).

Remark IV.5.0.1. Indeed, the way to make this answer less misleading
– which would take us astray – is to recognize that when you include strips
into the Stasheff associahedra, you will construct a stack that encodes both
planar structures, and ways to do Koszul duality with planar structures.

We would really love Theorem IV.2.1.1 to just “be the explanation” that
Fukaya categories are A∞. But of course, the theorem couldn’t possibly be
that, for the strip reasons already explained. This is the sense in which nat-
ural A∞ structure (which we’ll deduce in just a moment) are not organized
or explained in a natural way.

IV.5.1. Review of the mk operations in the Fukaya category.
So before we go on, let’s remember what we’re doing. Fix some collection
of Lagrangians L0, . . . , Lk inside a symplectic manifold M , along with in-
tersection points yi ∈ Li ∩ Li−1 (including the case “i = k, i+ 1 = 0”). We
assume the Li are in general position for simplicity. Then for any pair, we
define the hom chain complex (what we have been calling Vi,j earlier) to be

CF ∗(Li, Lj)

i.e., a chain complex generated by the intersection points, and a differential
computed by counting holomorphic strips.

Let me explain the holomorphic disks we’re going to count. The case
k = 1 explains the holomorphic strip case, too.

Notation IV.5.1.1. By a “holomorphic disk” with these boundary con-
ditions, I mean the data of a pair

(Σ, u)

where Σ ∈ Rk+1 is a choice of a domain for u – namely, a complex disk with
k + 1 boundary punctures10 – and

u : Σ→M

is a smooth map for which the ith deleted point of Σ converges to yi, where
the edge after11 the ith deleted point has image contained in Li, and (more

10When k = 1 or 2, there is a unique Σ
11This is with respect to the boundary orientation on Σ, induced by the orientation

of Σ (which is complex, hence has an orientation).
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or less) u satisfies the differential equation

du ◦ jΣ = JM ◦ du.
Here, du is the derivative of u, jΣ is the complex structure of Σ, and JM is
a chosen almost-complex structure on M .

As we learned from Nate and Catherine’s talks, the space of such pairs
{(Σ, u)} – when we choose things nicely – is a smooth manifold, possibly non-
compact, of predictable dimension. Moreover, the “predictable” dimension
is computed using numerical invariants one can associate12 to each |yi|.

The remarkable fact is that these invariants satisfy the equation13

|y1|+ . . .+ |yk| = |y0| ± (2− k)

precisely when the dimension of the space of pairs {(Σ, u)} is zero-dimensional14.
On the other hand, by Gromov compactness and regularity, when the space
of such pairs is zero-dimensional, said space is already compact – there are
only finitely many such pairs.

So what we then define is a map (this is just a function between two
chain complexes; it is not a chain map)

mk : CF ∗(Lk−1, Lk)⊗ . . .⊗ CF ∗(L0, L1)→ CF ∗(L0, Lk)[±(2− k)]

which, on generators, is given by the formula

(IV.5.1) yk ⊗ . . .⊗ y1 7→
∑

y0,|y0|=|y1|+...+|yk|±(2−k)

♯{(Σ, u)}y0

where ♯ refers to the number of points in the space of pairs {(Σ, u)}, counted
with sign.15 Note, importantly, that the degree shift of 2 − k (which was
analytically motivated by the desire for 0-dimensional moduli spaces) cor-
responds exactly to the degree in which an element mk ought to live by
the definition of A∞-category (which in turn was operadically/algebraically
motivated by the Stasheff associahedron model).

IV.5.2. Verifying the relations: Notation for M. There are vari-
ous geometric and analytic techniques needed to make the following theorem
honestly true as stated.

Theorem IV.5.2.1. The mapsmk defined by the formula (IV.5.1) satisfy
the A∞ relations (IV.3.7).

12This typically requires some tangential structures to be chosen on each Lagrangian
– such as lifts of the det2 map.

13The ± is there because of differences in homological versus cohomological conven-
tions – the algebraic convention chosen corresponds to a choice of geometric convention
where you think of the yi as located at incoming or outgoing boundary punctures of Σ.

14In the case k = 1, the space of such pairs always has an R-action because the
J-holomorphic curve equation has an R-symmetry, so we interpret the dimension of the
space of pairs to be the dimension obtained after modding out by the R action.

15These signs depend on an orientation of the moduli of such pairs, and this orienta-
tion depends on further choices on our Lagrangians of Spin structures.
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Remark IV.5.2.2. Here are some of the common “techniques” to make
the theorem true. Some people like to equip their Lagrangians with isotopy
data (for every tuple of Lagrangians) rendering Lagrangians transverse for
each mk operation. This accordingly needs some choices of coherent defor-
mations of the J-holomorphic curve equation. Others also like to consider
a Fukaya category by fixing some countable and general-position collection
of Lagrangians once and for all, and ignore unitality/endomorphism issues
(which one can do for various reasons – for example, we sometimes set up
the Fukaya category as a “directed” category, and then localize with respect
to maps induced by Hamiltonian isotopies).

We’ll only illustrate why you should believe this theorem for the k = 3
A∞ relations, and when the Lagrangians are in general position.

We don’t want to keep saying “space of pairs” (Σ, u) so let’s introduce
some notation.

Notation IV.5.2.3. Fix k + 1 Lagrangians (L0, . . . , Lk along with in-
tersection points y − i ∈ Li ∩ Li−1 for i = 0, 1, . . . , k. We let

M(y1, . . . , yk; y0) = {(Σ, u)}
denote the space of pairs as before – Notation IV.5.1.1.

Finally, when we do not specify y0, we let

M(y1, . . . , yk;−) :=
∐
y0

M(y1, . . . , yk; y0).

As of now, if everything is regular, this is a non-compact smooth16 manifold
with dimensions prescribed by a formula involving the |yi. Finally, we let

M(y1, . . . , yk;−)dim=d

denote the component of this manifold that is d-dimensional.

What I’d like to emphasize is that here, we will choose y0, y1, . . . , yk so
that the dimension of M(y1, . . . , yk; y0) may not be zero.

Remark IV.5.2.4. To prove the A∞ relations, one takes advantage of
the fact that each Vi,j = CF ∗(Li, Lj) has a chosen set of generators. So to
verify the relations, one need only check that, each time we plug in inputs
y1, . . . , yk, for every generator of the codomain chain complex y0, we see that
the y0 coefficient is zero.

IV.5.3. Verifying the relations, II: The way M lives over R.
We will prove the A∞-relations by studying the non-compact manifold of
dimension 1

M(y1, . . . , yk;−)dim=1.

16We know that each M is smooth by the inverse function theorem in the setting of
Banach manifolds – our regularity assumption tells us that M is cut out as the intersection
of two smooth objects that one should think of as transverse.
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Note that I have fixed the yi for i = 1, . . . , k, so by the dimension formula,
the − output must necessarily be some point z0 whose degree |z0| is 1 off
from the outputs y0 in the A∞-operations.

By design, there is a forgetful map

M(y1, . . . , yk;−)→ Rk+1, (Σ, u) 7→ Σ.

What Gromov compactness tells us is that this forgetful map extends to the
compactifications,

p : M(y1, . . . , yk;−)→ Rk+1,

and in a predictable way.

Remark IV.5.3.1. We would like to replace the word “predictable” with
more precise words, such as “codimension-preserving” and “factorizable.”
The fact that we cannot say this about p is one way in which the usual Rk+1

is, as it turns out, an unnatural object for organizing all the data of the
Fukaya category.

What Gromov compactness, in the setting we are in, tells us is that one
can form a compact space containing M(y1, . . . , yk;−) by adjoining points
that look like pairs:

(IV.5.2) (∧jΣj , u)

where the first variable is not a single disk, but a wedge of disks, each with
at least one incoming and one outgoing marked points. The rule is that the
wedge points take place along one incoming marked point of a disk, and one
outgoing marked point of another disk. u is a map out of this wedge into
your symplectic manifold M , where u|Σj is the usual kind of map we study
in this game.

Most importantly, the wedges of these disks look like mutated Mickey
Mouse pictures, but are topologically always contractible (no cycles). They
can in fact be drawn as a planar configuration of disks – see Figure IV.5.3.2.
In particular, there are “initial” input marked points; i.e., those that are
not glued to any outgoing marked point of any other disk. These detect the
boundary conditions given by y1, . . . , yk. There is also a “terminal” output
marked point – the lone output that is not glued to any incoming vertex
of any disk. The limit of this point is what is dictated by the boundary
condition y0.

Figure IV.5.3.2. Picture of some sample configurations defining ∧Σj .

And next most importantly, some Σj may be unstable, in that Σj could
be a strip – a disk with only two marked points – which has a continuous R
symmetry and is thus not usually considered a stable curve. This is a clear
difference from the way we compactified R into R – there, we only looked
at Micky Mouse pictures without strips.
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Notation IV.5.3.3. We let

M(y1, . . . , yk; z0)

denote the space of pairs (IV.5.2). This is the Gromov compactification of
M(y1, . . . , yk; z0).

Let’s draw a picture.

Figure IV.5.3.4. Picture of M before compactifying

Figure IV.5.3.5 is a picture of M(y1, . . . , yk;−)dim=1. It is a 1-manifold
with many connected components, and I’ve draw it suggestively as living
over the pentagon (an associahedron), as though k = 3. (Indeed, as we’ve
discussed, there is always a forgetful map from M(y1, . . . , yk;−) to Rk+1.)
Some connected components could be circles, but all other connected com-
ponents are open intervals (by virtue of M being a manifold). Note that
I’ve drawn these open intervals so that their endpoints might live over the
codimension 1 boundary of the pentagon, or live over the interior of the
pentagon.

Figure IV.5.3.5. Picture of M after compactifying

What Figure IV.5.3.5 depicts is the compactification, obtained by fill-
ing in the “open boundary points” of the intervals. The power of Gromov
compactness is that these new points (that fill in the holes) have known
forms:

(a) In codimension 1, they are obtained by either forming Mickey Mouse
configurations forming one new strip, or they are obtained precisely by
proceeding to the codimension 1 boundary of Rk+1.

(b) Moreover, all possible ways of ways of concatenating strips and disks
appear in the boundary of M.

Informally, the state of affairs may be written as17

∂(M
dim=1

) ∼= Mdim0 ◦Mdim0

where ◦ indicates the natural way in which we can concatenate pairs Σ, u.
A less imprecise way of writing the above is

∂(M(y1, . . . , yk; z0)
dim=1)

=
⋃

a+b≤k;a,b≥0

⋃
w

M(ya+1, . . . , ya+b;w)×M(y1, . . . , ya, w, ya+b+1, . . . ; z0)

17I write it in this form to explain why something looking like this came up in Kate
Poireier’s talk. I also hope that this geometric statement looks a lot like a Maurer-Cartan
equation. Indeed, I think the “correct” way to phrase the Fukaya category (over chain
complexes or over spectra) is as a category obtained by solving the Maurer-Cartan equation
given geometrically from the moduli of disks.
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where w runs over all intersection points w ∈ La+b−1 ∩ La+b rendering the
moduli M on the right to have dimension zero.

If enough structures are chosen so that one can orient M
dim=1

, then
we have the usual fact of differential topology that (counted with sign) the
boundary of a compact 1-manifold is null. Thus, if one can find concrete
chain models (e.g., an appropriate cellular chain complex for the M) for
which the fudamental classes of M(y1, . . . , yk;−)dim=0 represent the opera-
tions mk, one recovers the A∞ equations (IV.3.7) for the inputs y1, . . . , yk.

IV.6. Why a compactified moduli space of disks recovers the
associahedra (not covered in lecture)

I did not explain how one proves Theorem IV.2.1.1. One sketch is given
in a paper of Fukaya-Oh18, but the ideas there are a bit ad hoc.

I will tell you one way to construct this homeomorphism, at least on
the interior of the moduli spaces. The construction is natural enough that
I think it will help you convince yourself of what should happen near the
boundary.

The map I’m about to show you is a map I learned from Curt McMullen.
Some students that I work with are writing a detailed proof of the above
theorem using this particular map. All you need to know about is the
hyperbolic geometry of the Poincaré disk.

Fix a configuration z0, z1, . . . , zk ∈ S1, which we may assume to be
ordered with respect to the orientation of the circle (as a boundary to D2,
which is oriented by virtue of being complex). For every consecutive pair
of points zi, zi+1 modulo k + 1, there exists a unique hyperbolic geodesic
between the pair. Drawing these geodesics, one obtains a star-shaped region
in D2.

We have a distinguished z0, so let’s use it. Draw all circles tangent to
S1 at z0, and contained in D2. Such circles are called horocycles. It is a fact
of hyperbolic geometry that any two horocycles have a well-defined distance
between them. One way to witness this distance is as follows. There is a
natural R-action on the space of horocycles (the horocycles are the orbit
of a parabolic inside PSL(2,R)) and the R>0 part of this action moves all
horocycles toward the root z0; the real number that takes a given horocycle
to another is the distance between the two horocycles.

These horocycles foliate the star-shaped region. Consider the leaf space.
Concretely, we quotient the star-shaped region by the relation

x and x′ lie on a connected arc of a horocycle in the star-shaped region.

So [x] – an element of the leaf space – represents an arc of a horocycle. (One
horocycle may, after being instersected with the star-shapred region, give

18Kenji Fukaya and Yong-Geun Oh, “Zero-loop open strings in the cotangent bundle
and Morse homotopy.” Asian Journal of Mathematics, Volume 1 (1997), Number 1, Pages:
96 – 180. DOI: https://dx.doi.org/10.4310/AJM.1997.v1.n1.a5
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rise to many disconnected arcs.) And the R>0 action preserves the action
of moving each [x] in a distinguished direction toward z0. This exhibits
the leaf space as a tree with root z0 at infinity, and the hyperbolic metric
exhibits the tree as a metric tree (there is a real number associated to each
internal edge, called “what element of R>0 is required to travel along the
whole edge?”).

Picture
There are a lot of cool things one could say about this map; there is

actually another version that involves doubling Σ to a puncture P1 that
may be better-behaved, but let me not go into it.

IV.7. Broken objects (not covered in lecture)

I made some minor quibbles about how the map p : M → R cannot be
made codimension-preserving on the nose (Remark IV.5.3.1).

One way to make p codimension preserving is to realize that R does not
just want to compactify; but it wants to be the open part of some stack
where disks are allowed to degenerate allowing for strips to appear. Because
strips have automorphisms, such a moduli space must naturally be a stack.
In fact, the unnatural pattern of K1 = ∗,K2 = ∗ in the associahedra (which
breaks the dimension formula of dimKd = d − 2) is made more natural if
one can create an operad where K1 is the moduli of strips – a copy of “point
modulo R,” otherwise known as BR.

The most natural way I know of for thinking about Fukaya-categorical
structures is thus exploiting a version of the map p where the codomain is
no longer R, but a stacky expansion thereof – a stack of broken trees, or of
broken holomorphic disks. This stack, or more precisely, the disjoint union
of all these stacks for k ≥ 1, turns out to be a phenomenal object. It not only
receives a natural codimension-preserving and product-structure-respecting
map from M, it also turns out to encode Koszul duality for planar operads.
None of this is written down at present.

But a study of the k = 1 case, where one expects to recover associative
algebra structures (because the space of 1-ary operations forms an associa-
tive algebra) is exposited a bit in the work of Lurie-Tanaka19.

19Jacob Lurie and Hiro Lee Tanaka. “Associative algebras and broken lines.”
arXiv:1805.09587.
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Exercises about A∞-categories

IV.8. A∞-categories and their cohomology categories

Definition IV.8.0.1. Suppose that your base ring R is a field, and fix
an A∞-category C over R. We let

H∗C

denote the category with the same objects as C, but where

homH∗C(X,Y ) := H∗VX,Y

where VX,Y is our clunky notation for the morphisms in our A∞-category.20

(a) Show that H∗C is a (possibly non-unital) category.
(b) What conditions would you impose on C to make H∗C unital? (It turns

out that there are a few different options; in a higher-categorical sense,
whether a category is unital or not is a property of the category, so all
these definitions turn out to be equivalent under the same framework.
Indeed, the simplest definition of unitality is that H∗C ends up a unital
category.

(c) Was it necessary that R is a field?

IV.9. A∞ versus dg

Verify as much of the following as you like. You can find particular
models for everything below in Seidel’s book21, the first chapter.

(a) Let C be an A∞ category with A∞ operations mk. Suppose all the
mk = 0 for k ≥ 3. Show C is a dg-category.

(b) Look up the definition of the opposite of an A∞-category.
(c) Look up the definition of the A∞-category of A∞-functors between two

A∞-categories.
(d) Any A∞-category C has a Yoneda embedding; i.e., a fully faithful functor

C→ FunA∞(Cop,ChainR).

(Warning: This fully-faithfulness is detected at the level of H∗.)

20The reason that I used this notation in the notes is to avoid the multiply layers of
hom that would appear otherwise.

21Paul Seidel, Fukaya Categories and Picard-Lefschetz Theory (Zurich Lectures in
Advanced Mathematics). European Mathematical Society (EMS) 2008.
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(e) For any dg-category D and any A∞-category C, the A∞-category

FunA∞(C,D)

of A∞-functors is, in fact, a dg category.
(f) An equivalence of A∞-categories is a functor that induces isomorphisms

on all cohomology groups of hom-complexes. Any A∞-category is A∞-
equivalent to a dg category.
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Fukaya category exercise

IV.10. Turning higher-dimensional pictures into 2-dimensional
pictures

This is a common trick in the field for visualizing what higher morphisms
might be doing in the Fukaya category. It reminds me of one time Eric
Zaslow told me “you can just draw everything on the plane anyway.”

Let M be a symplectic manifold and fix Lagrangians L0, . . . , Lk. (I
would encourage you to think about the case k = 1 first.)

(a) If k = 1, let γ0 = R ⊂ R2 and let γ1 be some curve obtained by
considering the line ℓ = {y = 1}, then deforming ℓ in a compact region
to droop “below” γ0 in a transverse way; the resulting γ1 intersects γ0
in exactly two points, and is parallel to γ0 outside a compact set.

Pretending everything goes right, and ignoring the areas of disks,
compute the Floer complex

CF ∗(L0 × γ0, L1 × γ1)

including the differential.
(b) Show that your answer is the mapping cone of the identity morphism

from CF ∗(L0, L1) to itself. (In other words, the complex above is acyclic
– this is consistent with being able to Hamiltonian isotope γ1 to be
disjoint from γ0.)

Remark IV.10.0.1 (Relation to Lagrangian cobordisms). By replac-
ing L1 × γ1 ⊂M × R2 with some Lagrangian cobordism from L1 to L2,
one obtains interesting morphisms from CF ∗(L0, L1) to CF ∗(L0, L2).
(The Floer complex pairing L0 × γ0 against the cobordism is again a
mapping cone, but of a potentially non-identity morphism.) By treat-
ing L0 as a variable, by the Yoneda lemma, we see that Lagrangian
cobordisms give rise to morphisms in the Fukaya category.

This remark, of course, ignores the analytic and geometric questions
of when it makes sense to set up a Floer theory for Lagrangian cobor-
disms.

(c) Further fix curves γ0, . . . , γk ⊂ R; when k ≥ 2, you can take these
to be lines in general position. Understand the mk operations for the
Lagrangians

L0 × γ0, . . . , Lk × γk ⊂M × R2
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in terms of the mk operations for the Lagrangians

L0, . . . , Lk ⊂M.
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More operad exercises

Although the motivation for these courses is to set you up for Fukaya
categorical structures enriched over spectra (not chain complexes), the “eas-
ier” case is when everything is enriched over chain complexes. A lot of these
exercises give you some practice so that the chain complex techniques do
start feeling “easier.”

IV.11. Koszul sign rule practice

There is a general principle that helps us figure out what signs to place
in our formulas: (i) Every symbol has a degree. (ii) Each time you move
one symbol past another, you introduce a sign (−1)pq where p and q are the
degrees of the symbols you move.

Example IV.11.0.1. We usually say that a multiplication is commu-
tative if xy - yx = 0. You should think of this equation as expressing
commutativity when x, y have degree 0.

We will say that a multiplication is commutative in the graded sense if

xy − (−1)|x||y|yx = 0

where |x| is the degree/grading of x.
Usually, a derivation on a ring is an operator d for which

d(x · y) = dx · y + x · dy.

More generally, a derivation of degree k is an operator d, taking degree l
elements to elements of degree k + l, for which

d(x · y) = dx · y + (−1)k·|x|x · dy.

IV.11.1. Sphere swaps. Let σ : Rn+m ∼= Rn × Rm → Rm × Rn ∼=
Rm+n be the map taking

(x1, . . . , xn, y1, . . . , ym) 7→ (y1, . . . , ym, x1, . . . , xn).

We have an induced continuous map on one-point compactifications:

Sn+m ∼= Rn × Rm → Rm × Rn ∼= Sm+n = Sn+m.

Show that this induced map is, homologically speaking, a map of degree
(−1)nm. That is, fixing an orientation of Sn+m, this map is orientation
reversing if both n and m are odd, and orientation preserving otherwise.
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Remark IV.11.1.1. Topologically, this is the reason that the Koszul sign
rule exists; swapping an n-dimensional sphere past an m-dimensional sphere
in the natural way reverses orientation in a way dictated by nm.

IV.11.2. cdgas. Fix a vector space V (over some base field k) and a
binary operation (i.e., multipliation) V ⊗k V → V . Recall that this binary
operation is called a commutative if for any a, b ∈ V , a ⊗ b and b ⊗ a are
sent to the same element under this operation.

(a) Now suppose V has a grading (e.g., is a graded vector space). Write out
the equation expressing commutativity of a binary operation.

(b) Write out the equation expressing associativity of a binary operation.
(Hint: You never swap anything.)

(c) We further say that V is a commutative differential graded algebra, or
cdga, if V is equipped with a degree +1 differential d which (i) satisfies d◦
d = 0, and (ii) acts as a (degree 1) derivation on the chosen commutative
product. Show that for V to be a cdga is the same thing as writing a
commutative and associative product V ⊗kV → V , where now the tensor
product is a tensor product of chain complexes.

(Recall that U ⊗k V has same underlying vector space as the usual
tensor product, but has a differential given by d(u ⊗ v) = du ⊗ v +
(−1)uu⊗ dv.)

(d) Let X be a smooth manifold, and let Ω(X) denote its smooth deRham
forms over R. Show that Ω(X) – with its usual product, and its deRham
differential – is a cdga.

IV.11.3. dg Lie algebras. Fix a binary operation V ⊗kV → V . Recall
that this binary operation is called a Lie bracket if it is antisymmetric, and
if it is a derivation of itself. Writing this operation as a bracket, this last
statement becomes

[x, [y, z]] = [[x, y], z] + [y, [x, z]].

(a) Now suppose V has a grading (e.g., is a graded vector space). Write out
the two equations expressing antisymmetry of a bracket, and that the
bracket is a derivation of itself.

(b) We further say that V is a dg Lie algebra, or dgla, if V is equipped with
a degree +1 differential d which squares to zero and acts as a (degree 1)
derivation on a chosen Lie bracket.

(c) Suppose that A is a cdga and V is a dg Lie algebra. Exhibit a natural
dgla structure on A⊗kV (this is the tensor product of chain complexes).

(d) Let X be a smooth manifold, let g be the Lie algebra of a smooth Lie
group G. Show that the space of g-valued differential forms on X is a
dgla.

Remark IV.11.3.1. The classic example of a Lie algebra is the collection
of smooth vector fields on a smooth manifold; these are ways to “deform”
the identity diffeomorphism by flowing. More generally, dglas show up all
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over the place in modern algebra as a way to deform algebraic structures.
If you do a later exercise, you’ll see that in fact there is a notion of L∞
algebra, which are like chain complexes with a Lie bracket satisfying the
Jacobi identity but only up to higher and higher specific homotopies. These
play an important role in encoding, and classifying, deformation problems.

IV.12. Free algebras and coalgebras

For simplicity, let’s fix a base field k.
Let O be any (symmetric) operad in vector spaces over k, and let V be

any vector space (or chain complex) over some base field k. It turns out
that one can naively define the free O-algebra on V to be the chain complex

FreeO(V ) :=
⊕
n≥0

(O(n)⊗k V
⊗kn)/Σn

(a) Exhibit a natural O-algebra structure on FreeO(V ).
(b) Can you write-down a free-forget adjunction between the category of

O-algebras, and the category of chain complexes?
(c) When V is a vector space of dimension d (i.e., a chain complex concen-

trated in degree 0 with Euler characteristic d), compute FreeO(V ) when
O is the associative operad, and when O is the commutative operad. Is
this what you would expect? It may help to first understand the case
d = 0, 1, 2.

IV.13. Dunn additivity

The Dunn additivity theorem states that the category of E1-algebras in
the category of En-algebras is equivalent to the category of En+1-algebras.
Informally, the theorem states that an En-algebra is the same thing as a
single object with n+ 1 mutually compatible multiplications.

Here, we will see the importance of spaces of morphisms, by observing
that for sets, E2 is the same thing as commutativity.

(a) Let G be a connected Lie group. Show that π1(G) is abelian.
(b) Let M be a monoid. (This means M is a set, equipped with an asso-

ciative operation m : M ×M →M admitting a unit u : ∗ →M .) Note
that this makes M ×M into a monoid as well, by declaring

(M ×M)× (M ×M)→M ×M, ((a, b), (c, d)) 7→ (ac, bd).

Assume that you can give M another multiplication µ : M ×M → M
for which µ is a map of monoids, and for which µ is associative and
unital. (In other words, suppose you can exhibit M as a monoid in the
category of monoids.) Show that µ and m must be equal, and that both
are in fact commutative operations.

(c) Can you use part (b) to prove part (a)?
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More practice with En operads

IV.14. Basic computations in C∗En

Fix a base ring R.

(a) Compute that the homology of the 1-ary space En(1), and prove that the
homology is just R in degree 0. (Hint: Show that En(1) is contractible.)

(b) Compute that the homology of the 2-ary space En(2) is the homology
of the sphere of dimension n− 1.

(c) Conclude that, up to homotopy, if V is given the structure of an En-
algebra, then the homology of V is endowed with two binary operations
– one of degree 0, and another of degree n− 1.

(d) (*) Assume R has characteristic 0 and assume n ≥ 2. Show that the
degree n − 1 operation on the homology of an En-algebra V defines a
(graded) Lie bracket of degree n− 1.

(e) (*) Assume R has characteristic 0. Show that the degree n−1 operation
acts as a (graded) derivation on the degree 0 operation.

IV.15. Framed En

The framed En-operad has k-ary space of operations homotopy equiva-
lent to the space of all smooth embeddings of [0, 1]

∐
k into [0, 1].

(a) Show that En(1) is homotopy equivalent to O(n).
(b) Further, by computing composition of 1-ary operations, show that any

framed En-algebra is equipped with a (homotopical) action of the or-
thogonal group.

IV.16. BV algebras and Gerstenhaber algebras

Let’s work over a field R of characteristic 0. We let H∗(Efr
2 ) be the

homology of the framed E2 operad.

(a) Suppose A is a chain complex that is an algebra over chains of the E2 op-
erad. Show that the homology of A has the structure of a Gerstenhaber
algebra.

(b) Suppose A is a chain complex that is an algebra over chains of the
framed E2 operad. Show that the homology of A has the structure of a
BV algebra.

Remark IV.16.0.1. What the above exercises suggest is – whenever you
have a Gerstenhaber algebra, you can ask whether it secretly arises as an
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E2 algebra. Remember that being an E2 algebra is better structure; there
is more information to be gained than just homology.

The same holds for BV algebras – when you have a BV algebra, you can
ask whether it arises as an algebra over the framed E2-operad.

But the definition of E2, and framed E2, are rather geometric. Thus, for
something like string topology (which is geometric in origin), one is excited
to go ahead and try realizing some string topology operations as arising from
framed E2 structures.

Remark IV.16.0.2. Algebraic invariants like Hochschild cochains are
known to have E2-structures, while simultaneously satisfying some alge-
braically articulable universal properties (like classifying deformations). This
is strong evidence of the utility of being comfortable both with the topological/homotopy-
theoretic intuitions of E2-algebraic structures, and the algebraic motivations
for studying things that end up having such structures.

The most satisfying explanation for why Hochschild cochains have an
E2-algebra structure is Dunn additivity: Hochschild cochains compute en-
domorphisms of the identity functor. But such a collection has two multi-
plications – one by being endomorphisms of something, and the second be-
cause the identity can compose with itself. (People working with 2-categories
would say that Hochschild cochains ought to have both a horizontal and a
vertical composition.)
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LECTURE V

Ways operads (should) show up in Lagrangian
Floer theory, II: Moduli of Riemann surfaces and

framed E2 algebras

Last time we tried to see a couple connections:

(i) A connection between trees and disks: The associahedra {Kn} are
isomorphic to a moduli of boundary-nodal holomorphic disks {Rk+1}.

(ii) A connection between compactifications of moduli of J-holomorphic
disk maps and the algebra of A∞-algebras: The Fukaya category is an
A∞ category.

My complaints about R being blind to strips notwithstanding, there
is something very satisfying about all this – the geometry informed the
algebra. Most satisfying was that in step (ii), we used the geometry of how
J-holomorphic objects can map to a symplectic manifold to take advantage
of our intuition from (i).

Today, we’re going to see that we are still very much in Step (i) for
most higher-algebraic structures we want to witness in Fukaya categories,
in string topology, and so forth. Indeed, we’re going to talk about how
certain string topology operations can now be recovered algebraically as
purely formal statements about how certain moduli spaces act on certain
categorical invariants.1 But we do not know yet, as a community (as far as I
understand) how to exhibit these algebraic structures for Fukaya categories
in a manner similar to (ii) above – i.e., efficiently and directly from how
J-holomorphic disks behave in symplectic manifolds.

Really, this talk is way too ambitious. I want to make clear why we
think string topology has anything to do with Fukaya categories, and then
illustrate that the moduli of Riemann surfaces has an absurdly important
role to play in algebra. The moduli of Riemann surfaces was already inter-
esting enough from the perspective of complex/algebraic/smooth topology.
That it plays such an important role in higher algebra is a genuine miracle.

1We’ll try to see various guises of this in factorization homology, in a famous theorem
of Costello, and a finally-released pre-print of Kontsevich-Takeda-Vlassopoulos.
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V.1. An outline for the talk

“The moduli of holomorphic disks” is the beginnings of some “Deligne-
Mumford type2 moduli space” of all Riemann surfaces (possibly with bound-
ary).

On the other hand, we saw from Kate’s talks that some interesting struc-
tures in string topology have actions by the moduli of Riemann surfaces.
Since the very definition of the Fukaya category involves studying moduli
of maps out of certain Riemann surfaces (disk), is there some connection
between these two?

The answer is yes, when the symplectic manifold is a cotangent bundle
with some extra tangential structures that we will not go into. In this talk
I will try to explain how:

• The homology of the free loop space – one of the basic groups
having interesting operations in string topology – arises as a basic
algebraic invariant of Fukaya categories. Namely, by a combina-
tion of Abouzaid’s theorem and Goodwillie’s theorem, we witness
H∗LQ as the Hochschild homology of the wrapped Fukaya category
of T ∗Q. The S1 action on both are compatible under this isomor-
phism. At this point, we are now content asking if, or which of,
the string topology operations are formal consequences of purely
categorical structures.
• Hochschild cohomology of any linear category has a Gerstenhaber
algebra structure – this is because the Hochschild cochain complex
is an E2-algebra. In the setting of the wrapped Fukaya category of
T ∗Q for Q compact, it turns out that we can witness Hochschild
homology as the dual of Hochschild cochains:

(V.1.1) HH∗ ∼= (HH∗)∨[±d]

up to a shift of degree d = dimQ. As a result, we see that HH∗
inherits the structure of a dual of a Gerstenhaber algebra. This
already gives us string topology operations on H∗LQ of a “Ger-
stenhaber coalgebra.”
• Seven months ago, a pre-print3 of Kontsevich-Takeda-Vlassopoulos
(which had circulated in some form for years) was released on the
arXiv, and a new version was put up seven days ago (July 12th,
2022). They explain how any category with a “pre-Calabi-Yau”
structure has a Hochschild chain complex admitting the action of a
PROP computing cohomology of the moduli of Riemann surfaces.

2In what follows, we will also consider strip in our moduli spaces, so these will not –
strictly speaking – be Deligne-Mumford in the sense of having only finite automorphism
groups.

3Maxim Kontsevich, Alex Takeda, Yiannis Vlassopoulos. “Pre-Calabi-Yau algebras
and topological quantum field theories.” arXiv:2112.14667



D
ra
ft

V.2. THE BASIC CATEGORIES AT PLAY 155

As hinted at by the conjectures Kate told us about, the key ingre-
dient is actually a combinatorial model for describing the moduli
of Riemann surfaces in an algebraically usable fashion.

Remark V.1.0.1. It is known that the wrapped Fukaya category of T ∗Q
is (up to choice of certain tangential structures) a homotopy invariant of Q.
The isomorphism V.1.1 depends on a choice of orientation (really, a Poincaré
pairing). Thus, all of the string topology operations that are articulable
using formal, categorical constructions must also be a “weak” invariant, in
that they only depend on data like homotopy type and orientation of M .

On the flip side, the string topology operations known to be “strong”
invariants (i.e., that can distinguish the homeomorphism or diffeomorphism
classes of manifolds of the same homotopy type) must not be invariants that
can be articulated formally from categorical constructions beginning with
the wrapped Fukaya category.

Remark V.1.0.2. Let me warn you that the results about the wrapped
Fukaya category of T ∗M , stated above, have to do with a version of the
wrapped Fukaya category that ignores things like areas of disks. I do not
know what kinds of categorical invariants one can begin to define when we
keep track of the Novikov variable.

Remark V.1.0.3. As Kate stated in her talks, there is a result of Ab-
bondandolo and Schwarz that already established some connections between
symplectic invariants and string topology: The symplectic homology of T ∗M
is isomorphic to the homology of the free loop space of M .

Unsurprisingly, this result also has some motivation. It’s been known
already for a long time that the dynamics of the geodesic flow recover the
homology of the free loop space. Indeed, this was one of Morse’s original
applications – he used his theory to study how the space of geodesics change
upon deforming Riemannian metrics. And for people who do rational ho-
motopy theory, the fact that there are such concrete models for the rational
homology of loop spaces were the first applications to questions of interest
in Riemannian geometry.

Anyhow, the connection of the dynamics of the geodesic flow to sym-
plectic geometry is that the geodesic flow is a Hamiltonian flow for the
Hamiltonian called “norm-squared of a covector.” This equivalence is an
example of the Hamiltonian formulation of the least action principle.

V.2. The basic categories at play

V.2.1. The wrapped Floer cochains of a cotangent fiber. Let Q
be a smooth manifold. Then its cotangent bundle T ∗Q is a symplectic mani-
fold, and one can define a “wrapped Fukaya category” of T ∗Q which studies
the symplectic geometry of T ∗Q in a way respecting the conical/tubular
structure of T ∗Q away from the zero section.
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Theorem V.2.1.1 (Abouzaid4.). Let Q be an oriented closed manifold.
The5 wrapped Fukaya category of Q is equivalent to the category of perfect6

left7 modules over the A∞-algebra of chains on the based loop space of Q:

W(T ∗Q) ≃ ModPerf(C∗ΩQ).

Remark V.2.1.2. Here is one reason you might believe both sides of
this equivalence to have some relation to each other. It turns out that
the dynamics of a single cotangent fiber encapsulates everything on the
lefthand side – this is Abouzaid’s result that the cotangent fiber generates
the wrapped Fukaya category. The dynamics can be understood by applying
the Hamiltonian flow of a function |p| on parts of the cotangent fiber far
away from the zero section; the self-intersections of a cotangent fiber under
this flow are lifts of certain closed loops on Q, which one should think of
as geodesics – but of particular lengths, and based at the same point the
cotangent fiber is based. As we study this dynamic as we increase the slope of
|p| to be k|p| for k →∞, we simultaneously see longer and longer geodesics,
and the definition of the wrapped Floer cochains of a cotangent fiber.

On the other hand, I hand-waved earlier that the dynamics of the geo-
desic flow can recover the homology of the free loop space. One should think
of the previous paragraph as a “based loops” version.

Remark V.2.1.3. Abouzaid’s theorem about cotangent bundles is evi-
dence that the wrapped Fukaya category – at least this version of it – is a
very weak symplectic invariant. After all, it only depends on the homotopy
type of Q (together with a choice of orientation and Stiefel-Whitney class
of degree 2).

As always, there is a trade-off. The weaker invariants tend to have more
structure, and indeed one can prove a lot of interesting things about wrapped
Fukaya categories of this “homotopical” flavor.

As I’ve advertised before, it’s okay to have “weaker” symplectic invari-
ants if they give rise to interesting applications in other fields. Indeed, these
wrapped Fukaya categories are the first place to try and enrich Fukaya cat-
egories over spectra, and hence give rise to ways we might study stable
homotopy theory through symplectic geometry.

4Mohammed Abouzaid, “A cotangent fibre generates the Fukaya category.” Advances
in Mathematics 228 (2011) 894–939

5Technically, one must specify a particular structure on the symplectic manifold T ∗Q
to define orientation data for moduli spaces of J-holomorphic maps, and hence to define
any Fukaya-categorical data over Z. Here, that data is canonical – given by the second
Stiefel-Whitney class of Q pulled back to T ∗Q.

6You can think of this as meaning: Finitely generated under shifts and cones from
the C∗ΩQ.

7The distinction between left and right modules won’t matter much for us; because
ΩQ is group-like, it is equivalent to its opposite algebra.
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V.3. The free loop space via Hochschild homology

Abouzaid’s theorem above is the first concrete connection, in our lec-
tures, between Fukaya-categorical ideas and interesting algebra arising from
homotopy theory.

And, you might imagine that homotopy theorists know how to compute
things about the righthand side of Theorem V.2.1.1 – i.e., about the category
of modules over the based loop spaces. It turns out we can. In particular,
we can compute the Hochschild homology of this category.

Remark V.3.0.1. We have not talked about Hochschild homology yet; I
will introduce it more indepth in Exercise V.10. By definition, the Hochschild
homology of a single algebra is the homology of the derived tensor product

R⊗L
R⊗Rop R

of R with itself, over R⊗Rop. (This algebra is a convenient way of encoding
R-R bimodule structures.)

There is a definition of bimodules for categories as well, and when a
category is generated by a single object, it turns out that the Hochschild
homology of the category is equivalent to the Hochschild homology of the
endomorphism ring of that single object.

Using this trick, for small-enough categories like Fukaya categories of
small-enough symplectic manifolds, one can often reduce computations to
the case of a single A∞-algebra.

Here is the appearance of the free loop space – as a categorically formal
construction arising from the based loop space.

Theorem V.3.0.2 (Goodwillie8, Burghelea-Fiedorowitz9.). Let Q be a
pointed topological space and R any commutative unital ring. Then there
exists a natural isomorphism

HH∗(C∗(ΩQ)) ∼= H∗(LQ).

That is, the Hochschild homology of chains on the based loop space of Q is
isomorphic to the homology of the free loop space of Q.

Remark V.3.0.3. In fact, more is true; there is a natural map from one
complex to the other that induces this isomorphism on homology – so the
two complexes are quasi-isomorphic.

Remark V.3.0.4 (Circle actions). Let’s notice that LQ has a circle ac-
tion. Indeed, the space of maps S1 → Q has a circle action by rotating the
domain circle. Kate produced operations on the S1-equivariant homology
of LQ using this fact.

8Goodwillie, T.G. “Cyclic homology, derivations, and the free loopspace.” Topology
24.2 (1985): 187-215.

9Burghelea, D., Fiedorowicz, Z. “Cyclic homology and algebraic K-theory of
spaces—II.” Topology 25.3 (1986): 303-317.
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It turns out that the lefthand side – Hochschild homology of any cat-
egory – has a circle action as well. This was discovered quite combinato-
rially/algebraically, and goes back (I believe) to observations by Loday. I
think it’s fair to say that one of the difficulties in studying this circle action in
a geometric setting is that this circle action is so combinatorial; the geomet-
ric circle doesn’t actually appear until one finagles some things10, and even
then, the appearance doesn’t give full access to the circle as a 1-manifold.
The language of factorization homology – see III.7 – gives a 1-line proof that
there is a natural homotopy action of the oriented diffeomorphism group of
the circle on Hochschild chains (and this group is equivalent to the circle
group).

Let me outline how this one-line proof goes. It comes down to the
observation that Hochschild homology is a left Kan extension. Namely, if
Diskor1 is the topologically enriched category whose objects are disjoint unions
of oriented copies of R (i.e., open oriented disks) and whose morphisms are
smooth, open, orientation-repecting embeddings, then any A∞ or associative
algebra defines a functor

Diskor1 → Chain

sending
∐

I R to A⊗I . Moreover, it’s natural to try to extend such a fuctor
to the topologically enriched category of all oriented 1-manifolds. There is
a categorically formal way of constructing such an extension, called a left
Kan extension:

(V.3.1) Diskor1
A //

��

Chain

Mfldor1 .

∫
• A

::

This left Kan extension, by definition, is the factorization homology of A.
Moreover, clearly the category Mfldor1 has an object called the circle, and
the circle has an automorphism space given by the space of orientation-
preserving diffeomorphisms of the circle. Noting that Diff+(S1) is equivalent
as an E1-group to S1 itself, one conclude that

∫
S1 A has an action by S1. It is

a theorem that
∫
S1 A – the factorization homology of a circle with coefficient

in A – is equivalent to the Hochschild chains of A, and that the circle action
observed here is equivalent to the usual circle action on Hochschild chains.

Remark V.3.0.5. Anyway, it was proven in the same work of Goodwillie
and of Burghelea-Fiedorowicz that the isomorphism in Theorem V.3.0.2
arises S1-equivariantly, at the chain level.

By combining the two theorems we have spoken about today, we find
the following corollary:

10by taking geometric realization of a “cyclic” simplicial object
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Corollary V.3.0.6. For any oriented smooth compact manifold Q, the
Hochschild homology of the wrapped Fukaya category of T ∗Q is isomorphic
to the homology of the free loop space of Q.

HH∗W(T ∗Q) ∼= H∗(LQ).

Remark V.3.0.7. In line with Remark V.3.0.3, again, more is true.
Abouzaid’s theorem is proven at the chain level, so we in fact have a chain
level map from the Hochschild chain complex of W(T ∗Q) to the Hochschild
chain complex of (perfect modules over) C∗ΩQ; this in turn admits a quasi-
isomorphism to a chain complex computing the homology of the free loop
space.

V.3.1. Abbondandolo-Schwarz’s result. On the other hand, Kate
told us about the following result of Abbondandolo and Schwarz:

Theorem V.3.1.1 (Abbondandolo-Schwarz11). There exists an12 iso-
morphism between the “Floer homology” of T ∗Q and the homology of the
free loop space of Q:

H∗(LQ)
∼=−→ HF∗(T

∗Q).

Notation V.3.1.2 (SH). This is a notational and historical note. What
Abbondandolo-Schwarz called the “Floer homology” of the cotangent bundle
(in analogy with the usual Floer homology of symplectic manifolds, which
counts periodic orbits of Hamiltonians) is now called symplectic homology
of the cotangent bundle.

Thus, instead of following the notation of Abbondandolo-Schwarz, we
will follow the notation of symplectic homology. With this meaningless
change of notation, the isomorphism from Theorem V.3.1.1 can thus be
written as

H∗(LQ) ∼= SH∗(T
∗Q)

where the righthand side is now the notation for symplectic homology.

Remark V.3.1.3. In analogy with Hamiltonian Floer homology, SH∗
is also generated as a chain complex by circles – orbits under a particular
sequence of Hamiltonians that look like k|p| for bigger and bigger k. (As
another model, one could just take a single Hamiltonian that looks like
|p|2; the equivalence of these two models is given by using continuation
map arguments based on the fact that |p|2 has bigger derivatives than k|p|
eventually.)

11Alberto Abbondandolo and Matthias Schwarz. “On the Floer homology of cotan-
gent bundles.” Communications on Pure and Applied Mathematics, Volume 59, Issue 2,
February 2006. Pages 254-316.

12I do not use the word “natural” here; this is because the model that Abbondandolo-
Schwarz use does not have the properties that a natural transformation ought to. They
use particular Morse-theoretic models.
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Remark V.3.1.4 (Circle actions). As a result, one can imagine cre-
ating a model for SH also with a circle action, by keeping track of the
parametrization of the generating loops of the complex. As far as I can
tell, Abbondandolo-Schwarz do not make contact with circle actions in their
paper.

V.3.2. Some conjectures (now proven) inspired by putting it
all together. It is never fun to have a million results thrown at you; three
theorems aren’t a million, but they are still a lot. So let’s organize them.

W(T ∗Q)
_

HH∗
��

≃
Thm V.2.1.1

// ModPerf(C∗ΩQ).
_

HH∗
��

HH∗(W(T ∗Q))
∼= // HH∗(C∗ΩQ).

∼=Thm V.3.0.2
��

H∗(LQ)

∼=Thm V.3.1.1
��

SH∗(T
∗Q)

The first line is an equivalence of A∞-categories proven by Abouzaid (The-
orem V.2.1.1). We obtain the second line by applying Hochschild homology
to both sides of the equivalence. The rest of the isomorphisms follow from
the theorems referenced.

Of course, this composition tells us that the Hochschild homology of the
wrapped category of T ∗Q is the symplectic homology of T ∗Q. This is a very
nice result.

But you should find this proof dissatisfying: The domain and codomain
of this isomorphism are both objects that can be articulated using symplectic
geometry, yet the isomorphism passes through a purely algebraic result. Is
there a more geometric way to see this? In other words, re-writing the
bottom of the above diagram, is there a dashed map making the following
diagram commute?

HH∗(W(T ∗Q))
∼= //

��

HH∗(C∗ΩQ).

∼=Thm V.3.0.2
��

SH∗(T
∗Q)

∼=
Thm V.3.1.1

// H∗(LQ)

Moreover, the righthand vertical arrow is known to be equivariant with
respect to the circle action on both domain and codomain (Remark V.3.0.5).
Thus, could one make a geometric map in the lefthand side that also respects
a circle action?
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We may talk more about this later; let me just say that the most natural
constructions I’ve seen have to do with HH∗ – Hochschild cohomology – and
not HH∗. We’ll talk about HH∗ next.

Remark V.3.2.1. Wanting a more geometric model for this isomorphism
isn’t just a matter of mathematical aesthetics. In general – as we’ve seen in
studying both operads and in setting up the Fukaya category – the geometry
is the source of algebraic structures, so one can imagine that to prove results
in the future, one wants results that are geometric in nature. The closer the
results are to the starting points, the easier it is to prove things about the
starting points to prove more universal results.

And, the dashed arrow in the above diagram is the start of a trend in
this lecture. A ton of conclusions about geometric actions will only follow
from categorical results; I don’t think many people even want to bother
writing down purely geometric proofs of some of these structures directly
from the geometric definitions.

V.4. (Not covered in lecture) The appearance of E2: Dunn
additivity and Hochschild cohomolgy

The one-line conclusion of this section is that “Hochschild cochains form
an E2-algebra.” One would conjecture this to be true if one knew about
Dunn additivity.

V.4.1. To be E2 is to be E1 in E1. The following theorem is a key
tool for understanding and detecting examples of En-operads:

Theorem V.4.1.1 (Dunn additivity). The∞-category of En+1-algebras
is equivalent to the ∞-category of E1-algebras in the ∞-category of En-
algebras.

This theorem, in its original guise, was proven by Gerald Dunn; the
paper was published in 1988.13 The paper’s results translate into the for-
mulation above.

Example V.4.1.2. Suppose that A is an E1-algebra, meaning in partic-
ular that it is equipped with binary operations that are associative up to
homotopy.

Suppose that you give A another structure of an E1-algebra, and that
in fact, this is a structure of A as an E1 algebra of E1-algebras.

(The classical analogue would be to give A an associative algebra struc-
ture for which the multiplication map m : A⊗A→ A is a map of associative
algebras.)

Then, by Dunn additivity, there exists a canonical structure of an E2-
algebra on A.

13Gerald Dunn, “Tensor product of operads and iterated loop spaces,” Journal of
Pure and Applied Algebra, Volume 50, Issue 3, 1988, Pages 237-258, ISSN 0022-4049,
https://doi.org/10.1016/0022-4049(88)90103-X.

https://doi.org/10.1016/0022-4049(88)90103-X
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Remark V.4.1.3. Informally, the Dunn Additivity theorem states that
if you can give an object n compatible multiplications, then the object is an
En-algebra. This statement is most interesting in a setting where there are
homotopical structures present. In the exercises – Exercise IV.13 – you’ve
seen that En for n ≥ 2 is the same thing as being commutative (on the nose)
in the setting of abelian groups, or of sets.

In fact, more is true: If you can give an algebra n compatible multipli-
cations, they are all homotopic to each other.

V.4.2. Hochschild cochains are an E2-algebra. So, what are Hochschild
cochains?

Definition V.4.2.1 (Hochschild cochains, informal). Fix a category C.
Note that the identity idC is a functor from C to itself. we define the
Hochschild cochain complex of C to be the endomorphisms of idC – that
is, the collection of natural transformations from idC to itself.

Remark V.4.2.2. As suggested by the name Hochschild cochains, this
definition is most often applied when C is a dg- or A∞-category. In such
a setting, indeed the collection of natural transformations forms a cochain
complex.

Remark V.4.2.3. The definition above is informal; we will give a more
concrete model for it in Exercise V.11 when our category C has only one
object, and whose endomorphism ring is a ring R concentrated in degree 0.
In this setting, one computes the “derived endomorphisms” of the identity
functor to compute Hochschild cochains.

For now, let’s give some intuition as to why something like Hochschild
cochains should have an E2-algebra structure. We will rely on Dunn additiv-
ity (Theorem V.4.1.1 and Remark V.4.1.3). Recall that the Dunn Additivity
theorem tells us that if a single object can be given two compatible multi-
plications, then that object can be given the structure of an E2-algebra.

The collection of natural transformations f : id → id has exactly this
structure. Because id is an idempotent functor, there is a natural equiva-
lence id ◦ id ≃ id as functors. This endows the collection of natural endo-
morphisms a : id → id with two different compositions: One obtained by
just composing the various a, and another given by post- or pre-composing a
by the operation of multiplying id with itself. (This takes advantage of how
categories, functors, and natural transformations behave like a 2-category –
see Exercise V.9.)

Thus, one is led to conjecture that Hochschild cochains form an E2-
algebra. This is true in great generality, and the original proof goes back to
Tamarkin, who proved it in the dg-setting.

Theorem V.4.2.4 (The Deligne Conjecture). Let C be a dg-category, or
more generally, an A∞-category. Then the Hochschild cochain complex of
C has the structure of an E2-algebra in chain complexes.
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Remark V.4.2.5. Confusingly, this is one of those conjectures which –
after its affirmative resolution – did not change its name after becoming a
theorem.

Remark V.4.2.6. As far as I know, Deligne did not conjecture the the-
orem via Dunn Additivity (even though Dunn Additivity was published
already). Instead, in a letter in 1993, Deligne noted that the Hochschild co-
homology groups of an algebra had the structure of a Gerstenhaber algebra
(i.e., an algebra over the cohomology of the E2-operad) and wondered if this
cohomology level action lifted to the chain level. I say “as far as I know”
because I have never seen the original letter of Deligne.

Remark V.4.2.7. By the way, Gerstenhaber14 first computed that HH∗

has a commutative product and a degree 1 Poisson bracket in the 1960’s.
This is the origin of the term “Gerstenhaber algebra.” Then, in the 1970’s,
Fred Cohen15 showed that any algebra over the E2-operad has the property
that its homology is a Gerstenhaber algebra (though he did not use that
term). It took nearly twenty years until Deligne, in 1993, noted the connec-
tion in a letter to Stasheff and others. It is fun to daydream about what
interesting structures today will not have some obvious connections noticed
for 20 years.

V.4.3. Hochschild cohomology is a Gerstenhaber algebra. Now
that we know that Hochschild cochains of an A∞-category are an E2-algebra,
let’s simplify things by taking homology of the complexes. Then the homol-
ogy of (the spaces in the) E2 operad acts on the homology of the Hochschild
complex. More precisely, there is a new operad (in graded abelian groups)
given by homology of E2, and it acts on the graded abelian group called
HH∗.

Proposition V.4.3.1. If a graded abelian group A is an algebra for the
homology of the E2 operad, then the graded abelian group inherits

(a) A graded-commutative product A⊗A→ A.16 This renders A a unital,
graded-commutative ring.

(b) A Lie bracket of degree 1. More precisely, there is a bilinear map A⊗A→
A[1] which is graded skew-commutative:

{a, b} = (−1)|a||b|{b, a}.

This renders A[1] a graded Lie algebra with bracket degree 0.

14Gerstenhaber, M. The cohomology structure of an associative ring. Annals of Math.
78 (1963), 267–288.

15Cohen, F.R., Lada, T.J., and May, J.P. The homology of iterated loop spaces.
Lecture Notes in Mathematics, Vol. 533. Springer-Verlag, Berlin-New York, 1976.

16This comes from H0E2(2) ∼= k; that this is graded-commutative on the nose is for
the same reason that an E2 multiplication is commutative up to homotopy.
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Moreover, these two structures are compatible in that the bracket acts as a
graded derivation of degree 1 on the product:

{a, bc} = {a, b}c+ (−1)|b|(|a|+1)b{a, c}.

Remark V.4.3.2. A Poisson algebra (of degree 0 – i.e., in the classical
sense) is a commutative ring together with a Lie algebra structure where
the bracket acts as a derivation on the mulitiplication.

Thus, you should think of the algebraic structure in Proposition V.4.3.1
as like a Poisson algebra structure, but where the bracket has been shifted
by 1 degree.

Remark V.4.3.3. If you are not comfortable with all the exponents of
−1 showing up in graded formulas, check out Exercise IV.11 where you’ll
get practice with the Koszul sign rule.

Any graded abelian group with the above structures is called a Gersten-
haber algebra. What we see is that HH∗ is a Gerstenhaber algebra.

V.5. Wishlists from string topology

The upshot of the previous section is that Hochschild cohomology of
any dg- or A∞-category has a Gerstenhaber algebra structure on it. Now,
if there were – in addition to the above structures – a degree 1 , one-input
operation corresponding to a circle action, we would call A a BV algebra17.

We saw from Kate’s talks that H∗(LM), with a shift, had a structure
that was exactly that of a BV algebra. Let’s organize the structures we’ve
seen in an ad hoc table. The tables don’t match up in an apparently clean
way at the moment:

Categorical String topology
Hochschild homology has a circle ac-
tion.

The homology of a free loop space has
a circle action.

Hochschild cohomology has a Gersten-
haber algebra structure.

The homology of a free loop space has
a shifted Gerstenhaber algebra struc-
ture, somehow compatible with the
above circle action.

Remark V.5.0.1 (Naive thought 1). Things would match up far more
nicely if there were a way to relate Hochschild homology and Hochschild
cohomology to each other, with a shift.

And, there is more. Let’s assume that you don’t care about the above
mismatch, but you are interested in proving some of the claims/conjectures
we saw in Kate’s talks. For example, is it possible that the moduli of Rie-
mann surfaces acts on the homology of the free loop space?

17I am not spelling out here the compatibility between this circle operator and the
other structures of bracket and product; see Kate’s notes/exercises.
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You’ve probably seen by now that there is a helpful philosophy in this
higher-algebra game. Just as with the A∞-relations in Fukaya categories,
we should look for universal explanations for algebraic structures by simply
understanding the correct moduli spaces. In your situation, is there some
single system of geometric moduli spaces that controls all the structure that
you want to encode?

When we squinted yesterday, we saw that an A∞-category is the same
thing as a structure living over the moduli space of marked holomorphic
disks, with an extra detail – we cared about which marked point was the
0th marked point, so we could talk about outputs of composition. Imagine
for a moment that we have a structure that is just like an A∞-category, but
with a way of not caring about the linear order (e.g., 0th point) of boundary
marked points of disks.

Disks w ∂ marked points
something cyclic on an A∞-cat// Chain

Then, the moduli of marked holomorphic disks is just a small part of a
bigger moduli space – the moduli space of Riemann surfaces (with marked
points on the boundary). And category theory has formal techniques – like
Kan extension – that can extend the above structure:
(V.5.1)

Disks w ∂ marked points

��

something cyclic on an A∞-cat // Chain

Riemman surfaces w ∂ marked points

Kan extension

22

This should be compared, of course, to (V.3.1).

Remark V.5.0.2 (Naive thought 2). What if there was a notion of A∞-
category with a “cyclic” structure like the one imagined above? Does it have
categorical invariants with actions of the moduli of all Riemann surfaces?

V.6. Calabi-Yau structures and Costello’s theorem

Amazingly, both naive thoughts above have a simultaneous and a clever
observation – I am not sure to whom it is due, but I learned it from Costello’s
paper18, and it may admit some predecessor’s in talks of Kontsevich – boot-
strapping off the observation we made last lecture about A∞-relations and
moduli of disks with marked points.

It turns out that a very popular and naturally-occurring categorical
structure that gives rise to such a structure is that of a Calabi-Yau cate-
gory.

Definition V.6.0.1 (Calabi-Yau structure of dimension d). Let C be a
dg- or A∞-category. A Calabi-Yau structure of dimension d on C is the data

18Kevin Costello, “Topological conformal field theories and Calabi–Yau categories.”
Advances in Mathematics 210 (2007) 165–214.
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of a cyclically invariant pairing on C that is non-degenerate with a shift of
degree d.

A more concrete definition can be found in, for example, the famous
paper of Costello – see Exercise V.12. For now, let me say that this pairing
is extra data. It in particular supplies, for every ordered pair of objects of
C, a linear map

⟨, ⟩X,Y : hom(X,Y )⊗ hom(Y,X)→ R[d]

where R is my base ring. Such a pairing is called symmetric if

⟨, ⟩X,Y = ⟨, ⟩Y,X
and non-degenerate if the induced map

hom(X,Y )→ hom(Y,X)∨[d] = homChain(hom(Y,X), R[d])

to the dual is an equivalence.

Example V.6.0.2. For a dg- or A∞-category to admit a Calabi-Yau
structure is a very restrictive condition. For example, if X and Y are ob-
jects with no negative homs between them in either direction19, the hom
complexes looks like

. . .→ 0→ hom0(X,Y )→ hom1(X,Y )→ hom2(X,Y )→ . . .

and

. . .→ 0→ hom0(Y,X)→ hom1(Y,X)→ hom2(Y,X)→ . . . .

In particular, the dual complex of the latter is concentrated in non-positive
degrees:

. . .→ (hom2(Y,X))∨ → (hom1(Y,X))∨ → (hom0(Y,X))∨ → 0

So for the hom(X,Y ) chain complex to be equivalent to a finite d-shift of
hom(Y,X)∨, we see that both hom(Y,X) and hom(X,Y ) must have no
cohomology above degree d.

This constraint on the homological range in which hom complexes can
exist uses only the non-degeneracy condition of the pairing.

Remark V.6.0.3. A consequence of being Calabi-Yau is an isomorphism

HHi(C) ∼= HHd+i(C)∨

between Hochschild homology and the linear dual of Hochschild cohomology,
up to a shift of degree d.

The connection to the moduli of Riemann surfaces is as follows:

19for example, if X and Y are both vector bundles and if your category is a dg-version
of DbCoh
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Theorem V.6.0.4 (Costello20; Hiro will leave things vague.). Let C be
a Calabi-Yau dg- or A∞-category. Then the Hochschild chain complex of C
has an action by the PROP of chains on the moduli of Riemann surfaces.

Remark V.6.0.5. This comes very close to fulfilling Kate’s wish of hav-
ing the moduli of Riemann surfaces act on H∗(LM), but the theorem cannot
accomplish this. The reason Costello’s result cannot produce this is that the
hom-complexes of the relevant categories are too large – neither W(T ∗Q),
nor modules over chains on the based loop space, have finitely concentrated
hom complexes. On the other hand, the recent pre-print of Kontsevich-
Takeda-Vlassopoulos does give what Kate wants.

V.7. An outline of the proof of Costello’s theorem

The proof is remarkable and beautiful; the introduction of the paper is
worth reading. Indeed, Lurie’s paper on the Cobordism Hypothesis cites
Costello’s work as the inspiration.

V.7.1. A∞-categories are certain functors out of a category
with disk-morphisms with one output. First, Costello fixes a collec-
tion Λ of objects (think of them as Lagrangians in a symplectic manifold)
and defines a category whose morphisms are holomorphic disks with marked
points on the boundary where exactly one is marked as outgoing, and the
others are marked as incoming; each morphism also has labels by elements
of Λ.

This is confusing, so read carefully: One thinks of each ordered pair
(λ, λ′), and more generally, each tuple of ordered pairs(

(λi, λ
′
i)
)
i

as an object. Between any two such tuples of pairs, one can construct a
moduli space of Riemann surfaces with boundary, with boundary arcs given
labels given by the λi, and labels interrupted by marked points. By taking
chains on these moduli of Riemann surfaces, we witness a category enriched
in chain complexes. We’ll let D+ denote the subcategory consisting only of
those Riemann surfaces that are nodal disks with exactly one output marked
point (and ≥ 0 input marked points). Then a functor

D+ → ChainR

sending
∐

of labels to⊗, is precisely the data of anA∞-category. Concretely,
to a pair λ, λ′ one associates a chain complex Vλ,λ′ . To a disk with k inputs

and one output, one thus assigns a linear map V ⊗k → V . The moduli of
such disks has dimension k − 2 as we discussed last time, so one can think
of this as a single linear map in degree k − 2.

20Kevin Costello, “Topological conformal field theories and Calabi–Yau categories.”
Advances in Mathematics 210 (2007) 165–214.
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Remark V.7.1.1 (A description of D+). There are in fact some unnatu-
ral things about Costello’s construction that I have not yet fully understood,
except to see that they are necessary for the conclusions. The disk with ex-
actly one marked output point (and no input points) is formally declared
to have a 0-dimensional moduli space called a point, and it is meant to
pick out the identity map R → Vλ,λ. The disk with exactly one input and
one output marked point (a strip) is required to pick out the identity map
Vλ,λ′ → Vλ,λ′ of hom complexes. Indeed, this follows from the definition of
composition in Costello’s category D+: Strips glue onto other disks without
changing those disks, while the 0-input disk glues with the effect of elimi-
nating a marked input point. All other disks “compose” by concatenating
along nodes, producing Mickey Mouse pictures.

Pictures.

Remark V.7.1.2. The observation that certain functor outs of D+ is
the same thing as an A∞-category is in fact quite useful. By noting that
D+ is formal, Costello actually proves in this paper that the theory of A∞-
categories is equivalent to the theory of dg-categories. This proof is very
different from the usual proof passing through some form of Yoneda (for
example, the proof sketched in Chapter One of Seidel’s book).

V.7.2. Calabi-Yau categories are functors out of a cyclic nodal
disk category. Now let

Dopen

denote the category with the same objects, but with more morphisms: Now
disks are allowed to have arbitrarily many inputs and outputs, subject to
a Zorro’s Lemma relation: Concatenating a 2-input-0-output disk with a
2-output-2-input disk along one node results in a 1-input-1-output strip
(which, by our discussion of D+, acts as the identity under concatenation).

Pictures.
Moreover, we place a shifted local system on the moduli of such disks;

this has the effect that any functor

(V.7.1) Dopen → ChainR

will take a disk with two input punctures to a degree d pairing

Vλ,λ′ ⊗ Vλ′,λ → R[d].

The Zorro relation referred to above renders this pairing non-degenerate.
The fact that disks have cyclic symmetries renders this pairing cyclically
symmetric. In other words, a functor as in (V.7.1) is precisely the data of a
Calabi-Yau category.

V.7.3. The proof of Costello’s theorem. Now, Costello notes that
Dopen naturally sits inside a category OC of “open closed” Riemann surfaces
as morphisms. In particular, this category has more objects given by bound-
ary circles of Riemann surfaces with no marked points. Given a Calabi-Yau
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A∞-category C, one can formally compute the left Kan extension, realizing
the diagram from the wishlist (V.5.1):

Dopen
C,⟨,⟩ //

��

ChainR

OC

left Kan extension

66

The remarkable theorem is that this left Kan extension evaluates on the
circle exactly the Hochschild chain complex of C. In particular, for free, the
moduli of all Riemann surfaces acts on Hochschild chains, and in fact, in an
open-closed way (e.g., receiving actions from the homs of the ∞-category C

as well).

Remark V.7.3.1. The proof of the theorem ultimately relies on a careful
construction, by Costello, of a particular “cellular” decomposition for the
moduli of Riemann surfaces.

Remark V.7.3.2. The remarkable thing about this proof strategy is
that the action is exhibited by a universal property. Indeed, by definition
of the left Kan extension, this action is initial among all reasonable actions
one could write. This is a far stronger result than just writing an action by
hand.

Remark V.7.3.3. The above proof should of course be compared to (V.3.1).
Factorization homology is defined in a completely analogous way: One be-
gins with a basic structure (such as an En-algebra), realizes the structure is
equivalent to a functor out of some geometric∞-category (of n-dimensional
framed disks) and left Kan extends to a more interesting ∞-category (of all
n-dimensional framed manifolds).

V.8. pre-Calabi-Yau structures

Now let me try to give a rough idea of what Kontsevich-Takeda-Vlassopoulos
do. I have not read their proofs, though, so my discussion here will be quite
superficial. It also seems that various versions of the pre-print had already
been circulating among experts, but I had never seen it, so I was quite
excited to skim the paper.

Here are three big steps forward taken in the preprint:

(a) They introduce the notion of a pre-Calabi-Yau structure of dimension d.
As you saw above, the notion of being Calabi-Yau imposed very strong
conditions on how finite hom-complexes could be (and another subtle
homological condition on whether the category itself is smooth; that’s
another topic). A pre-Calabi-Yau structure can exist on categories with-
out such strong homological constraints. Moreover, a pre-Calabi-Yau
structure has beautiful geometric interpretations in non-commutative
geometry (Remark V.8.0.2).
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(b) They create a model of the moduli of Riemann surfaces that is, ap-
parently, quite useful. Indeed, the preprint cites prior work of Tradler,
Zeinalian, Poirier; but it seems the big insight is the organizational
power of certain quadratic differentials (familiar from the theory of flat
surfaces).

(c) Combining the two, the authors prove that for any pre-Calabi-Yau A∞-
category, the Hochschild chains has an action by the PROP of chains
on the moduli of Riemann surfaces, where the chains are twisted by a
local system shifted in degrees depending on d.

It’s a result of Ralph Cohen and Sheel Ganatra21 that the wrapped
Fukaya category of T ∗Q, and chains on the based loop space, have compat-
ible pre-Calabi-Yau structures (in fact, an even more restrictive structure
of what’s called “left Calabi-Yau”). Combining the three-author pre-print
with the based-loop-space side of the result of Cohen-Ganatra, we find:

Theorem V.8.0.1. For any oriented, smooth, compact manifold M ,
chains on the free loop space C∗ΩM enjoy an action from the PROP of
chains (with coefficients in a shifted local system) on the moduli of Rie-
mann surfaces.

Remark V.8.0.2. Because Kate stated as a conjecture the action of this
PROP on chains on the based loop space, it seemed climactic to mention
the result of Kontsevich-Takeda-Vlassopoulous.

But I want to talk a little bit about why the definition of pre-Calabi-Yau
structure is exciting.

If you’re a symplectic geometer, you probably know the difference be-
tween a symplectic and a Poisson structure. The former is controlled,
well-behaved; the latter is much more wild. But from the perspective of
quantization, it’s a Poisson structure that gives you a way to quantize the
commutative structure of C∞ functions on a manifold.

It turns out that a pre-Calabi-Yau structure is a derived, non-commutative
geometry generalization; that is, if I understand correctly, the three authors
conjecture that a pre-Calabi-Yauness on an A∞-algebra is exactly the alge-
braic analogue of placing a Poisson structure on a manifold.

A concrete manifestation of this claim would be to witness a shifted
Poisson structure on the moduli of representations of the given A∞-algebra.

There is yet another mysterious interpretation. Using Koszul duality,
one can think of an A∞-structure on a graded vector space as the same
thing as giving a degree 1 vector field (a coderivation) on a formal “graded
manifold” (the free coalgebra on the graded vector space). This amounts to
writing down a solution to the Maurer-Cartan equation in the Lie algebra
structure of the 1-output Hochschild cochain complex hom(V ⊗k, V ). Ap-
parently, there is a l-output version one can write down for all l ≥ 1 at once,

21This is summarized in a pre-print available on Ralph Cohen’s website. “Calabi-Yau
categories, the Floer theory of a cotangent bundle, and the string topology of the base.”
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again with a Lie bracket, and a solution to the Maurer-Cartan equation
seems to be the data of a bunch of polyvector fields that are involutive; i.e.,
the analogue of giving a foliating polyvector field.

I do not know if these foliations are non-commutative generalizations of
the foliation theory that Toën and Vezzosi are developing in the setting of
derived algebraic geometry.22

22See the pre-prints Bertrand Toën, Gabriele Vezzosi. “Foliations and stable maps,”
arXiv:2202.09174 and Bertrand Toën, “ Classes caractéristiques des schémas feuilletés ”
arXiv:2008.10489.
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Exercises

V.9. The 2-categorical structure of categories

Fix three categories C1,C2,C3, and six functors

Fi, Gi, Hi : Ci → Ci+1, i = 1, 2.

Also fix natural transformations a : F1 → G1 and b1 : G1 → H1.

(a) Convince yourself that the composition b1 ◦ a1 makes sense, and is still
a natural transformation.

(b) Convince yourself that the notation G2◦a1 makes sense – as does H2◦b1.
(c) Write out the ways in which you can obtain a single natural transfor-

mation from F2 ◦F1 to H2 ◦H1. Are there “two notions of composition”
you are using? How are they compatible?

(d) Suppose now that C1 = C2 = C3 and F = G = H, and you are sup-

plied with a natural isomorphism F ◦ F
∼=−→ F . Can you prove that the

collection of natural transformations of F is a commutative monoid?

V.10. Hochschild homology

Throughout, we fix an associative unital ring R over a base ring k, and we
let ⊗ = ⊗k. For simplicity, everything below assumes that R is concentrated
in degree 0 – i.e., is an ordinary ring, and not a cdga or a dga.

(a) Let Rop be the opposite algebra. Concretely, the multiplication in Rop

is given by
x ∗op y := y ∗ x

where ∗ is the original multiplication in R.
(b) Let M be a k-module. Show that the structure of an R-R-bimodule

on M is equivalent to given an R ⊗k Rop left module structure on M .
More concretely, exhibit an equivalence of k-linear categories between
the category ofR-R bimodules and the category of leftR⊗kR

op modules.

Definition V.10.0.1. Let M be an R-R bimodule. Then the nth
Hochschild homology of R with coefficients in M is the tor group

HHn(R;M) := TorR⊗Rop

n (R,M)

where R is considered a bimodule over itself. When R = M , we simply
say the above tor groups are the Hochschild homology of R. In this case,
we use the notation

HHn(R).

173
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Warning V.10.0.2. There are particular chain complexes that com-
pute the Hochschild homology groups. Depending on the circle of math
you’re in, you may hear mathematicians saying “Hochschild homology”
to actually mean this chain complex (even though “Hochschild chain
complex” is also a term for this exact thing). In which case, they would
define Hochschild homology to be the following chain complex:

R⊗L
R⊗Rop M.

– i.e., as the derived tensor product of R with M over R⊗Rop.
This gives an indication of how would defines Hochschild homology

when R is more generally a ring spectrum. Given a bimodule M , one
defines the spectrum

R⊗R⊗Rop M

be the “Hochschild homology” spectrum of R with coefficients in M .

(c) By using the fact that Tor0 computes the usual tensor product, exhibit
an isomorphism

HH0(R) = R/[R,R].

Remark V.10.0.3. That is, HH0(R) looks like the universal k-
module classifying maps t out of R satisfying23 t(xy) = t(yx). Such
t are called traces on R.

Thus, you should think of the Hochschild chain complex of R as,
more generally, the derived object classifying all derived traces out of
R.

(d) When R = M and R is commutative (and if you are familiar with
algebraic geometry) explain why the Hochschild chain complex of R can
be interpreted as computing (the space of functions on) a “derived”
self-intersection of the diagonal of SpecR× SpecR = Spec(R⊗R).

Remark V.10.0.4. Intuitively, a derived intersection is supposed to
keep track of the set-theoretic intersection, together with data on how
one can deform the intersection if one wanted to. When R is a commu-
tative ring encoding a nice, smooth object, one might then imagine that
the derived intersection of R has something to do with the normal bundle
of SpecR inside SpecR × SpecR, hence the tangent bundle. You can
look up the Hochschild-Kostant-Rosenberg theorem, which computes
HH∗(R) in nice examples – indeed, HH∗(R) computes the group of
deRham algebraic forms (i.e., the space of differential forms on SpecR).
This is quite natural if you believe this derived intersection should have
something to do with the tangent bundle – HH∗(R) is like a polynomial
algebra generated by functions on the tangent bundle. (Every tangent

23By the way, a common mistake that linear algebra students make is to believe this
equation implies that “t(xyz) = t(xzy)”. This quoted equation is false. For example,
verify that the usual trace of n-by-n matrices is only invariant under cyclic permutations
of matrix products, but not by arbitrary permutations.
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vector field on SpecR – aka a derivation on R – gives rise to a number
by the universal property of algebraic Kahler differentials.)

This is a wonderful result, and a funny one: The homology of some-
thing computes a complex which is supposed to have a natural differ-
ential. (That is, the homology groups of Hochschild chains computes
the deRham forms themselves, not the deRham cohomology.) It turns
out that Hochschild homology has a degree ±1 operator arising from a
circle action on Hochschild chains, and this operator recovers precisely
the deRham differential.

Notice also something funny. The ith Hochschild homology of R
computes the ith wedge powers of deRham forms (which one normally
thinks of as in degree i with cohomological conventions).

Remark V.10.0.5. For a less commutative example, consider C∗ΩX,
chains on the based loop space of X. Because ΩX is an E1-space, chains
on it is an E1-algebra, and it makes sense to speak of the Hochschild
chain complex on such an “associative” algebra. The theorem of Good-
willie is that

HH∗(C∗(ΩX)) ∼= H∗LX.

That is, Hochschild homology of chains on the based loop space is the
homology of the free loop space of X. For some reason, the more pop-
ular citation of this theorem requires that X be simply-connected, but
that is not at all needed. (This is probably a confusion of a result of
Goodwillie with a result of Jones.) The only assumption needed is that
X is connected.

(e) Look up the definition of the Hochschild chain complex. It looks like a
chain complex generated by a simplicial object with terms

. . . R⊗n ⊗M
n+1−−→ . . . R⊗R⊗M

3−→ R⊗M
2−→M.

Here, the superscripts over the arrows indicate how many simplicial face
maps there are; so M is the 0th level of the simplicial set, and there are
two boundary maps from R⊗M to M . These maps act by taking

r ⊗m 7→ rm±mr

(and hence uses the bimodule structure on M).

Remark V.10.0.6. The Hochschild chain complex is a very nice
presentation of the derived tensor product R⊗R⊗Rop M , but – just like
the bar resolution, or like singular chain complexes of a space – is used
mainly to think about functoriality properties of Hcohschild chains. Peo-
ple who know how to do computations would rarely work straight from
the definition of the Hochschild chain complex to begin a computation.

(f) When M = R, what does HH1(R) have to do with derivations on R?
(Hint: Given a derivation from R to R, does one obtain a number from
an element of HH1(R)?)
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V.11. Hocschild cohomology

(a) Let C,D be two categories and fix two functors F,G : C → D. Recall
that a natural transformation from F to G is a choice of morphisms

ηc : Fc→ Gc, c ∈ ObC

such that the diagram

Fc //

��

Gc

��
Fc′ // Gc′

commutes for any morphism c→ c′ in C.
(b) Let C be the category of left R-modules. Then there is an endofunctor of

C called the identity functor. Identify the set of natural transformations
of idC with itself with the center of R.

Definition V.11.0.1. Let M be an R-R bimodule. Then the nth
Hochschild cohomology of R with coefficients in M is the Ext group

HHn(R;M) := ExtnR⊗Rop(R,M)

where R is considered a bimodule over itself. When R = M , we simply
say the above groups are the Hochschild cohomology of R. In this case,
we use the notation

HHn(R).

(c) Look up the Hochchild cochain complex. It is a complex whose coho-
mology computes Hochschild cohomology. It looks like

. . .→ homk(R
⊗n,M)→ . . .→ homk(R

⊗2,M)→ homk(R,M)→ homk(k,M).

Given f ∈ homk(R
⊗n,M) in degree n, the differential is given by

(df)(a1, . . . , an+1) = ±a1f(a2, . . . , an+1)

+
∑
±f(a1 ⊗ . . .⊗ aiai+1 ⊗ . . . an+1)

± f(a1 ⊗ . . .⊗ an)an+1.

I know the signs above are vague, but once you look up the correct signs,
show that HH0(R) is the center of R.

(d) A version of the HKR theorem from the previous exercises states that,
when R is commutative and nice enough, HHn(R) is the collection of
n-polyvector fields on SpecR. Specifically,
• HH0(R) = R, interpreted as the collection of functions on SpecR.
• HH1(R) = Γ(T SpecR), the collection of vector fields on SpecR;
this is also known as the collection of derivations from R to itself.
• HHn(R) is the nth wedge power (over R) of HH1(R).
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Interpreting, then, the degree 1 part of HH∗(R) as the space of vector
fields on something, why would you expect HH1(R) to have a “Lie
bracket of degree 1?” (Recall that the space of vector fields usually has
a Lie bracket (of degree 0); and that’s when that space is in degree 0.)

(e) Inspired by the above analogy, look up the Schouten brakcet, or the
Gerstenhaber bracket, for Hochschild cohomology. Recalling that a vec-
tor field on a manifold is the same thing as a smooth derivation, does
this bracket look the way you would expect?

(f) Coming back to the idea that Hochschild cochains is an E2 algebra, we
know that HH∗ ought to be a Gerstenhaber algebra. Is the space of
polyvector fields a Gerstenhaber algebra?
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Exercises on Calabi-Yau categories

V.12. One definition of being Calabi-Yau

The following definition can be found in Costello’s paper24 We fix a base
ring R.

Definition V.12.0.1. A Calabi-Yau structure of dimension d on an A∞-
category C is the data of – for every object A,B ∈ C – a map of chain
complexes

hom(A,B)⊗ hom(B,A)→ R[d]

which is non-degenerate, satisfying the following two conditions:

(i) (The pairing is symmetric.) Call the above pairing ⟨, ⟩A,B. Then

⟨, ⟩A,B = ⟨, ⟩B,A ◦ swap
where swap is the swap hom(A,B)⊗hom(B,A) ∼= hom(B,A)⊗hom(A,B)
of chain complexes. (This swap does not use any structure on C.)

(ii) More generally, we demand that the pairing be cyclically invariant,
meaning

⟨mn(a0 ⊗ . . .⊗ an−1, an⟩ = ±⟨mn(a1 ⊗ . . .⊗ an−1, a0⟩

(a) Show that if C has a Calabi-Yau structure of degree d, one has an iso-
morphism

HHi(C) ∼= HHd+i(C)∨

between Hochschild homology and the linear dual of Hochschild coho-
mology, up to a shift of degree d.

(b) Let X be a smooth and proper Calabi-Yau variety of complex dimension
d. Using Serre duality and the choice of a top-form on X, convince
yourself that DbCoh(X) (or rather, an appropriate dg enbhancement)
is Calabi-Yau of dimension d.

24Kevin Costello, “Topological conformal field theories and Calabi–Yau categories.”
Advances in Mathematics 210 (2007) 165–214.
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Koszul duality exercises

Hiro lost steam; he will type these up as exercises in due time. For now,
please have the beautiful hand-written set of exercises from Joey.
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LECTURE VI

∞-categories

“It is time.”
– Rafiki

My goal today is to finally peek under the hood of this thing called ∞-
categories. I want to convey that fancy-schmancy homotopical arguments
are actually enabled through incredibly concrete combinatorics. The big
victory is that we have one language for organizing intricate homotopical
structures, and that this language has incredible formal propertes.

Indeed, the success of ∞-categories in the last two decades isn’t really
a victory of higher category theory – I think people already thought about
higher-categorical structures. The real victory is for combinatorics. The
reason ∞-categories are useful is that there is a concrete, unambiguous,
combinatorial way to prove things.1

Remark VI.0.0.1 (References). One of the challenges as someone start-
ing to learn this stuff is that – even though everything is written down – it is
hard to know which of Jacob Lurie’s lemmas/propositions accomplish what
we want to accomplish. So I have written references where appropriate.

So if you see anything references below like “Proposition 1.1.2.2” you
should know that this refers to Proposition 1.1.2.2 in Lurie’s Higher Topos
Theory. The PDF of Higher Topos Theory is freely available on Lurie’s
website2.

I may also reference Lurie’s second book, Higher Algebra. This is also
freely available on Lurie’s website3.

VI.1. Categories and their nerve

Let C be a category (in the usual sense). For sake of having a concrete
example, you can imagine that C is the category of groups.

I want to explain how, from C, I can extract a completely combinatorial
object. This comes down to thinking of a category as a bunch of marsh-
mallows, toothpicks, rubber triangles, and higher-dimensional versions of

1This is not to say that other attempts are higher categories were ill-defined. They
were perfectly well-defined. They were simply harder to work with for certain purposes.

2https://www.math.ias.edu/~lurie/papers/HTT.pdf
3https://www.math.ias.edu/~lurie/papers/HA.pdf
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these. Another way to think about the combinatorics is: How can you draw
a cartoon of a category?

Well, let me draw a vertex (a marshmallow) for every object of C. So
I have a set4 of vertcies in bijection with the set of finite groups. Because
vertices are 0-dimensional objects, I will write this set of vertices as

C0.

Then, every time I have a morphism (e.g., a group homomorphism) from X
to Y , I am going to draw a toothpick – an oriented toothpick, mind you –
from the vertex X to the vertex Y . Note that a given pair of vertices may
have many, many arrows between them.5 A combinatorial way to encode all
this is that we have a set of edges

C1

which is in bijection with the set of all morphisms in C, and I have a pre-
scription of where to send the head and tail of the edges:

d0 : C1 → C0, d1 : C1 → C0.

d0 picks out the head, and d1 picks out the tail. The i in di will make sense
in a moment. Note that if an object has endomorphisms (all objects do –
there are identity morphisms) then we have “loop” edges accordingly. This
won’t be a big deal at all for us.

So far, we have extracted the structure of a directed graph from a cate-
gory. Let me start using the fact that there’s a composition in my category.
That is, given morphisms f12 : X1 → X2 and f01 : X0 → X1, I know exactly
what I mean by the composition f12 ◦ f01 : X0 → X2.

So, let me attach a triangle between three edges fij : Xi → Xj precisely
when I know the following:

f12 ◦ f01 = f02.

In other words, in my combinatorial gadget, I will draw insert a triangle for
every commutative triangle6 in my category C. I will call the set of such
triangles

C2.

4There is of course the real, important observation that the “set of all sets” (and
in particular, the set of all abelian groups) is not a set. There are standard fixes to
this observation, the most common being the use of Grothendieck universes. If you are
comfortable with Grothendieck universes (i.e., assuming that inaccessible cardinals exist),
you can of course take categories of whatever size you like; then the common language is
that the “set of all (small) sets” is not a small set, but is a “large” set.

5Because any two groups always admit a homomorphism between them in either
direction, this particular graph happens to be connected. But generally, these graphs
may be disconnected; even when the graph is connected, two objects may not have any
morphisms between them.

6Commutative triangles do not get as much love as commutative squares. Today is
their day.
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Note that C2 then has three maps

d0, d1, d2 : C2 → C1

telling us how to glue a given triangle to three edges. Let me explain the
indexing. Because our triangles should be thought of as oriented, we have
an ordering on its set of vertices, so we can talk about the 0th, 1st, and 2nd
vertices of a triangle. Then di says “the edge opposite the ith vertex should
be glued to this edge.”

Example VI.1.0.1. For example, given a commutative triangle

T = X0
f01 //

f02 !!

X1

f12
��

X2

∈ C2

then

d0(T ) = f12, d1(T ) = f02, d2(T ) = f01.

You can do the same thing for any k ≥ 3. We declare

Ck

to be the set of commutative k-simplices in C. Let me run through, very
explicitly, what I mean by a commutative k-simplex. I mean a collection of
objects X0, . . . , Xk, morphisms fi,j : Xi → Xj for i < j, such that

fi,k = fj,k ◦ fi,j
for every triplet i < j < k. Let me assure you this isn’t very much data – it’s
uniquely specified by the consecutive edges f01, f12, f23, . . . , f(k−1)k. Again,
Ck has k + 1 “boundary” functions:

d0, d1, . . . , dk : Ck → Ck−1

telling us which (k − 1) simplex we should glue the face opposite the ith
vertex.

So far, we witness the combinatorics of maps that look as follows:

(VI.1.1) . . .
**
44
$$

::
// C3

**
44
%%

:: C2
**
44// C1

**
44 C0

But there’s more!
Categories have things called identity morphisms for objects. That is,

for every objectX, there is a distinguished morphism idX so that idX ◦f = f
(or g ◦ idX = g) for any morphism f (or g) with codomain (or domain) given
by X. So, there’s a map

C1 ← C0,

sending a vertex X to the directed edge idX . And indeed, given any com-
mutative k-simplex, we can make a k + 1-simplex by inserting an identity
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edge at any vertex. Let me illustrate this in two examples:

(
X0

f−→ X1

)
7→


X0

f //

!!

X1

idX1
��

X1


or


X0

idX0 //

!!

X0

f
��

X1


We will call these two triangles s1f and s0f , respectively, where the si means
we insert an identity morphism from the ith vertex to a new vertex, to be
interpreted as the (i+ 1)st vertex. What we then witness are k maps

Ck ← Ck−1 : si, i = 0, . . . , k − 1.

Drawing all of these for all k at once, we have maps that look as follows:

(VI.1.2) . . . C3jj
vv
bb
��

C2jj
tt oo C1jj

tt
C0

oo

Definition VI.1.0.2 (Face and degeneracy maps). The maps depicted
in the original diagram (VI.1.1) are called face maps (because they pick out
the faces of a commutative k-simplex) and the maps in (VI.1.2) are called
degeneracymaps, because the images of the maps feel “degenerate” by virtue
of being results of identity morphism insertions.7

Remark VI.1.0.3. If you are to remember any diagram, it is (VI.1.1).
All the meat of anything we study today will be in the face maps.

What we see is that there is some potentially structured combinatorial
data arising from any category. It’s time to organize this data.

VI.2. Simplicial sets

The beautiful fact is that the above combinatorics can be encoded with
great efficiency.

Notation VI.2.0.1. For a given integer n ≥ 0, we let

[n] = {0 < 1 < . . . < n}

denote the linearly ordered set with n+ 1 elements.

Remark VI.2.0.2. Recall that a map of posets is a map f : P → Q for
which p ≤ p′ =⇒ f(p) ≤ f(p′). A map f of posets is an isomorphism if f is
bijection whose inverse is also a map of posets. Then any finite, non-empty,
linearly ordered poset is isomorphic to a [n] for some unique n.

7Warnings: If you are new to this game, beware that the di are the face maps; not
degeneracy maps, despite the fact that “d” is the letter that begins degeneracy. You
should imagine that di is being used because d is often used for boundaries in algebra. As
we will see soon, the si are dual to surjections.
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Definition VI.2.0.3 (The simplex category). We let

∆

denote the category whose objects are finite, non-empty, linearly ordered
sets. Morphisms are map of posets.

Remark VI.2.0.4. Perhaps this follows Kate’s observation that too many
things are labeled by ∆. But I think it is fair to say that the use of ∆ to
denote simplices, and the above category of simplices, is a very important
and common notation – and in many ways is more fundamental than most
mathematical instances of the notation ∆, perhaps with the exception of
“change” in calculus.

Remark VI.2.0.5. By Remark VI.2.0.2, we may pretend that ∆ is a
category (up to equivalence) whose objects are literally in bijection with the
non-negative integers: There is an object [n] for every n ≥ 0.

Example VI.2.0.6. Fix k. Then there are k + 1 injections

δi : [k]→ [k + 1]

given by “skipping the ith element” of k+1. Drawing only the injections be-
tween consecutive k, we thus find a diagram whose shape is dual to (VI.1.1).

. . . [3]jj
vv
bb
�� oo [2]jj

tt
ee

yy
[1]jj

tt oo [0]jj
tt

Likewise, there are k surjections

σi : [k]→ [k − 1]

given by “send the ith and i + 1st elements to the same image.” You can
draw the corresponding diagram.

Remark VI.2.0.7. We can also understand every morphism in ∆ by un-
derstanding the injections and surjections, as every map will factor uniquely
as a surjection followed by an injection.

What we find is that the combinatorial data we observe in C0,C1,C2, . . .
looks exactly dual (i.e., arrows reversed) to the combinatorial data of ∆.
This inspires us to define the following:

Definition VI.2.0.8. A simplicial set is a functor

∆op → Sets.

A map of simplicial sets is a natural transformation. We let

sSets

denote the category of simplicial sets.

Remark VI.2.0.9. Because all functions are generated by injections and
surjections, and because it turns out all surjections in ∆ are compositions
of σi maps, and all injections are compositions of δi maps, a simplicial set
can be determined by exactly the data of
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• A set Xk for every k ≥ 0,
• Functions d0, . . . , dk : Xk → Xk−1 for every k ≥ 1, and
• Functions s0, . . . , sk : Xk → Xk+1 for every k ≥ 0.

These functions do need to satisfy some relations called the simplicial re-
lations. There are five of them, so yes, this is dirty work, but it’s worth
doing:

(1) didj = dj−1di for i < j.
(2) sisj = sj−1di for i < j.
(3) disj = id if i = j or i = j + 1.
(4) disj = sjdi−1 if i > j + 1.
(5) sisj = sj+1si if i ≤ j.

Example VI.2.0.10 (The nerve of a category). Fix a category C. The
data of the face and degeneracy maps from earlier define a simplicial set
sending

[k] 7→ Ck, δi 7→ di, σi 7→ si.

This simplicial set is called the nerve of the category C.

Notation VI.2.0.11 (N(C)). It is an eternal struggle in this business
whether to notate the nerve using C0,C1, . . . or to use a symbol like

N(C)

to denote the nerve, to remind us that C is a category andN(C) is a simplicial
set. I may be sloppy with this from time to time.

Remark VI.2.0.12. Moreover, to give a functor between two categories
C and D is the same thing as giving a map of simplicial sets between their
nerves. More precisely, the nerve functor is a fully faithful embedding of the
category of categories into the category of simplicial sets – Exercise VI.15.

You should think of “simplicial sets” as a purely combinatorial object –
the data required to produce a simplicial set can be checked using precise
equalities, and these equalities are manageable.

Thus, this remark should be thought of as saying: “The theory of cate-
gories is completely encoded by combinatorics.” This will be more true in
a moment – the notion of natural transformation of functors, for example,
has yet to be discussed.

Remark VI.2.0.13. A natural transformation of simplicial sets is a con-
crete piece of data one can often write down. Given two simplicial sets X
and Y , a map from X to Y is just the data of a function fk : Xk → Yk for
every k ≥ 0. It turns out every morphism in ∆ is a composition of the σi
and δi, so one only needs to check that the fk commute with the si and the
di (that is, that f respects fact and degeneracy maps).
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VI.3. Simplicial sets and spaces

So, it’s pretty neat that every category can be encoded, quite nicely and
faithfully, as a simplicial set (a combinatorial object). But here’s where the
theory is even better: A simplicial set can also encode a topological space.

Example VI.3.0.1 (The singular chains of a space). Let X be a topo-
logical space. We define a simplicial set

Sing(X)

as follows. The set of k-simplices

Sing(X)k := homSpaces(∆
k, X)

is given by the set of continuous functions from the standard k-simplex to
X.

Here’s what we can observe: There are standard inclusions of the faces
of a k-simplex into ∆k, which we might as well call ∂i. Likewise, there are
linear projection maps from a k-simplex to the (k − 1)-simplex, which we
may as well call σi. Thus, pulling back along the ∂i and σi gives rise to the
di and si of Sing(X).

Let’s digest this simplicial set a bit. The set Sing(X)0 is in bijection with
X itself. Then, the set Sing(X)1 is in bijection with the set of continuous
paths in X. Given γ ∈ Sing(X)1, the boundary ∂1γ is the starting point of
the path, and ∂0γ is the ending point.

Example VI.3.0.2. Now, suppose that we have two paths γ12, γ01 where
γij is a path from xi to xj . Then the data of a 2-simplex H : ∆2 → X with

∂0H = γ12, ∂2H = γ01

would precisely be the following data: A new path called ∂1H, and a homo-
topy between the endpoint concatenation γ12 ◦ γ01 and ∂1H.

I am using the notation ◦ here, not ♯. One is to connote composition,
but the other is to really emphasize that γ12 ◦ γ01 is not parametrized by a
single 1-simplex; it is rather parametrized by a “horn” obtained by gluing
two 1-simplices along a common endpoint. So there is no need to choose
any reparametrizations of paths in this interpretation.

You should thus interpret H as a “homotopy comuting triangle” in some
category. Sing(X) is like a category whose objects are given by elements of
X, whose morphisms are given by continuous paths (from 1-simplices) in X,
but where we do not define what composition is, strictly speaking. (Indeed,
we do not choose to interpret γ12 ◦γ01 as a data of a new 1-simplex; it just is
what it is.) We simply say that there exist certain 2-simplices, and interpret
them as datum exhibiting that there is some notion of homotopy between a
potential composition of the γij .
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VI.4. Kan complexes (the “spaces”) of simplicial sets

It turns out that one can create a homotopy theory of spaces using only
simplicial sets. This was one of the original motivations for people like Kan
and Quillen to study simplicial sets. But to initiate such a study, it is
convenient to pick out the simplicial sets that behave like spaces. (As an
example, not every category behaves like a space.) Such simplicial sets are
called Kan complexes, and to define what a Kan complex is, I need to define
horns.

Notation VI.4.0.1 (The n-simplex as a simplicial set). We call the
simplicial set

∆n = hom∆(−, [k])
the simplicial n-simplex. (This double-books our notation for the topological
n-simplex; we will live with this.) See Exercise VI.17 for more exposition on
this.

Remark VI.4.0.2. By the Yoneda lemma, a map of simplicial sets ∆n →
X is the exact same thing as picking out an element of Xn; i.e., as an n-
simplex of X. See Exercise VI.17.

Remark VI.4.0.3. The above formula can seem a bit abstract if you
don’t like the Yoneda embedding, so I would encourage you to simply think
of ∆n as the nerve of the poset [n], which probably feels more finite. (This
nerve is isomorphic to ∆n.)

In fact, realizing that ∆n is not only the functor represented by [n], but
is also the nerve of [n], is incredibly powerful. The Yoneda embedding allows
us to conclude that simplicial set maps from ∆n are precisely the same thing
as picking out an n-simplex of the target. On the other hand, thinking of
[n] as some free category generated by n consecutive morphisms, we have
hope that maps out of ∆n encode simple categorical building blocks.

Notation VI.4.0.4 (Horns). Fix n ≥ 0 and 0 ≤ k ≤ n. We let

Λn
k ⊂ ∆n

denote the simplicial set obtained from ∆n by deleting the (interior of) the
n-simplex, and deleting the face of ∆n opposite the kth vertex.

Remark VI.4.0.5 (Expositing Λn
k). The above definition of Λn

k is a bit
informal. Here is a more concrete definition: We define

Λn
k([a])

to be the set of poset maps [a] → [n] that do not surject onto the subset
[n] \ {k}.

Probably the most healthy characterization of Λn
k is as the simplicial

set glued out of exactly n simplices of dimension n − 1; they are glued
together exactly the way that the faces of ∆n are glued together, and without
including the kth face.
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Example VI.4.0.6. Below are the pictures of the three possible horns
for n = 2:

0 // 1

��
2

0 //

��

1

2

0

��

1

��
2

.

These are the horns Λ2
1,Λ

2
0,Λ

2
2 respectively.

Remark VI.4.0.7 (Horns can’t always be filled in a category). Note that
if the above diagrams depicted morphisms in a category, only Λ2

1 has any
hope of being completed to a 2-simplex; the others could only be completed
if there were a nice factorizatoin property, or perhaps inverses, to the given
edges/morphisms.

Remark VI.4.0.8 (Horns can always be filled for a space). On the other
hand, imagine being given a continuous map from a horn-shaped space to a
space X. The horn-shaped space is a strong retract of a simplex; thus, we
can “extend” any continuous map from a horn to a continuous map from
the simplex. This inspires the following definition.

Definition VI.4.0.9. Let X be a simplicial set. We say that X is a Kan
complex if for every n ≥ 0 and every 0 ≤ k ≤ n, every map from the horn

Λn
k

//

��

X

∆n

>>

extends to a map from the n-simplex.

Example VI.4.0.10. Let W be a topological space. Then Sing(W ) is a
Kan complex.

Remark VI.4.0.11. Given a map from a horn, the filler from the simplex
is rarely unique. Make sure you understand this point in the example of Sing.

Example VI.4.0.12. A simplicial group is a functor ∆op → Ab to the
category of groups. By forgetting the abelian groups to simply be sets, one
obtains a simplicial set. It turns out any simplicial group is a Kan complex
– Exercise VI.19.

Remark VI.4.0.13. If Kan complexes are like spaces, there should cer-
tainly be a notion of homotopy groups of a Kan complex, again defined using
the language of simplicial sets. This is given in Exercise VI.18.

Remark VI.4.0.14. For more on the homotopy theory of simplicial sets
(modeling topological spaces), I recommend the book of Goerss-Jardine8.

8Paul G. Georss and John F. Jardine, “Simplicial Homotopy Theory.” Reprint of the
1999 original. Basel: Birkhäuser (2010)
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VI.5. Categories inside sSets

In fact, we can also characterize (simplicial sets arising as nerves of)
categories inside all simplicial sets.

Theorem VI.5.0.1. [Proposition 1.1.2.2] LetX be a simplicial set. Then
X is isomorphic to the nerve of a category if and only if, for every map from
an inner horn, there exists a unique filler to a map from a simplex. That
is, for every n ≥ 2 and 0 < k < n, and every map Λn

k → X, the filler below
uniquely exists:

Λn
k

//

��

X

∆n
!∃

>>

Remark VI.5.0.2. For the case n = 2, k = 1, you should think of the
map from Λ2

1 as giving rise to two morphisms call f12, f01. That there exists
a unique extension to the 2-simplex means that there is a unique edge one
ought to call the composition of the two given morphisms, and that there is
a unique 2-simplex realizing this (as a commutative diagram). In particular,
if there is any commutative diagram involving f01, f12, and a third edge f02,
then one can conclude that f02 = f12 ◦ f01.

VI.6. ∞-categories

I have tried to convince you that this purely combinatorial idea of a
simplicial set can capture topological spaces (via Sing) and categories (via
the nerve).

Staring at the definition of Kan complex, and the characterization of cat-
egories, one is led to contemplate whether a existence (but not uniqueness)
of horn-fillings are a natural thing to look at.

For example, suppose that you could fill every horn Λ2
1 to ∆2, but not

necessarily uniquely. Taking the hint from 2-simplices in Sing(W ), one could
interpret each horn-filling 2-simplex as exhibiting a third edge (i.e., a mor-
phism) f02, and a statement that f02 is homotopic to “some composition
of f12 with f01.” But a change in perspective arises: We never do need to
define composition on the nose; the horn-filling just tells us we can produce
third edges out of 2, and in perhaps many ways.

That the following condition is important was first identified by Andre
Joyal – he used the term “quasi-category” to describe these simplicial sets.
Lurie is responsible for the term “∞-category.”

Definition VI.6.0.1 (∞-category). Let C be a simplicial set. We say
that C is an ∞-category if, for every n ≥ 2 and for every 0 < k < n, any
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map from Λn
k into C extends to the n-simplex:

Λn
k

//

��

X

∆n
∃

>>

We see that this definition broadens Kan complexes, in the sense that
horn-fillers need only exist for certain horns. This reflects the fact that not
every morphism in a category is invertible. (See Remark VI.4.0.7.)

The definition of ∞-category also broadens categories; as already dis-
cussed, the notion that these horns may be filled, but not uniquely, opens
the door to interpreting simplices as homotopy coherent diagrams, and to
the fact that a given collection of morphisms may have many different ways
to produce new morphisms.

Definition VI.6.0.2. Let C be an ∞-category. We call an element of
C0 (i.e., a vertex) an object of C. We call an element of C1 (i.e., an edge) a
morphism.

Given a morphism f ∈ C1, we say that x1 = d0f is the codomain of f ,
and x0 = d1f is the domain of f . Alternatively, we say that f is a morphism
from x0 to x1.

Remark VI.6.0.3. An∞-category was originally called a quasi-category
by Joyal. Boardman and Vogt called it a weak Kan complex. The term ∞-
category originates in Lurie’s writing.

Be warned that the term ∞-category, in conversation, can refer to the
idea of (∞, 1)-category in general9. For us, in these lectures, ∞-category is
the notion given in Definition VI.6.0.2.

Remark VI.6.0.4. Out of any∞-category C, there are two natural Kan
complexes one can define.

One is the “largest Kan complex sitting inside C.” Informally, this Kan
complex is obtained by throwing out all non-homotopy-invertile morphisms
from C. Lurie often denotes this Kan complex by

C≃.

The other is the “smallest Kan complex containing C.” An informal
combinatorial description is as follows: This Kan complex is obtained in-
ductively by attaching more and more simplices so that all horns have a
filler. Categorically, an informal description is that this Kan complex is ob-
tained by localizing all morphisms of C (i.e., rendering all morphisms of C
invertible up to homotopy). I often denote this ∞-category by

|C|

9That is, a “category” containing notions of higher k-morphisms for all k ≥ 1, and
for which every morphism of level k ≥ 2 is invertible up to higher morphism.
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but I must admit that this is not great notation. It is meant to connote the
geometric realization of C, which is an actual topological space, but whose
Sing does model the Kan completion of C. See Exercise VI.21.

VI.7. Functors

Definition VI.7.0.1. A map of∞-categories is a map of simplicial sets.
We will also call such a thing a functor between ∞-categories.

Remark VI.7.0.2. Let ∆n be the nerve of [k]. You should think of this
as a very rigid, classical category.

Fix an ∞-category C. Then a functor ∆n → C is now, all of a sudden,
an incredibly homotopical object. The edges of ∆n specify morphisms in C,
but all its simplices up to dimension n now encode homotopies and higher
homotopies between “compositions” of these morphisms.

One way to think about this is that producing a functor might be diffi-
cult, because a functor will contain so much data. In reality, it is true that
it can take a lot of work to make certain functors; but let’s keep in mind
that every functor in the usual sense gives rise to maps of simplicial sets –
Exercise VI.15. So in fact, this new notion of functor allows us to do strictly
more than we could before.

Even better, the notion of “map of simplicial sets” gives a very concrete
definition for what it means to produce a homotopy coherent functor; you
could imagine that such a notion spent decades enjoying intuition but lacking
definition.

Remark VI.7.0.3. Another point is that – while individual functors may
be hard to write down – the collection of all functors is incredibly formal to
write down; and indeed, the ∞-category of functors is easy to write down.
See Exercise VI.23.

Indeed, in that same exercise you will be asked to play with natural
transformations as well; they are defined quite easily.

Example VI.7.0.4. Let D = Sing(W ) be (the singular complex of) a
topological space. We can now speak of functors Sing(W ) → C, and of
limits/colimits of such functors – this is quite exciting! For example, if
W = BG is the classifying space of a group G, a functor Sing(W ) → C

exactly encodes the data of an object of C with a homotopy coherent G-
action (even when G is a discrete group!).

Indeed, when G is a discrete gropu, you can literally write down a sim-
plicial set called BG – the set of k-simplices is given by Gk (so there is a
unique 0-simplex), and the face maps are given by forgetting or multiplying
factors. This simplicial set is a Kan complex. It models the usual classifying
space.
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VI.8. Examples

There are so many that they are quite hard to write down in one talk.
But a lot of examples of categories that ought to be “higher categories” are
known to naturally fit into the framework of ∞-categories.

Remark VI.8.0.1. While this lecture uses ∞-categories, depending on
the context, sometimes other models of higher categories are more advanta-
geous. The model of complete Segal spaces are also incredibly useful.

The technology of model categories is incredibly useful for computations,
but a bit clunky, because it can only model presentable ∞-categories; in
particular, one needs all limits and colimits to exist. For example, the ∞-
category ∆k does not exist as a model category.

The model of categories enriched in topological spaces is the most intu-
itive, but turns out to be incredibly difficult to work with. Trying to enrich
such a collection over itself (what is the Top-enriched category of functors
between two topologically enriched categories?) is do-able but suffers from
the reality that enrichments often give rise to incorrect mapping spaces.

Again, a useful analogy might be that a given module or chain complex
admits many different resolutions. Depending on what you want to do,
different resolutions are better than others. For example, Koszul resolutions
are fantastic for computation, but very dependent on context and hence not
great for relating different algebras. On the other hand, the bar resolution
can be difficult to compute with, but gives functorial properties very nicely.
This is also similar to the difference between cellular chains and singular
chains. (I hope you have never computed the homology of a space using
only the definition of singular chains; we rather use their formal properties.)

Example VI.8.0.2. We have already seen that every category is an ex-
ample of an ∞-category (by taking the nerve).

Example VI.8.0.3 (Spaces and ∞-groupoids). We have also seen that
every space is an example of an ∞-category (by taking Sing). This is an
example where you should think of every morphism as invertible – i.e., as
an ∞-groupoid. This is because any path has an inverse up to homotopy;
this is a many-basepoint version of the fact that π1 is a group.

Definition VI.8.0.4. An ∞-groupoid is a Kan complex. (Informally,
an ∞-groupoid is an ∞-category where every morphism is invertible up to
homotopy.)

Example VI.8.0.5 (Topologically enriched categories). Let C be a cate-
gory enriched in topological spaces, so that for every pair of objects, homC(x, y)
is given the structure of a space.

Then there is an associated ∞-category called the “homotopy coherent
nerve”, which I will also write as N(C). This nerve is characterized by
properties I will try to write out in Exercise VI.25; let me give some examples
of simplices.



D
ra
ft

208 VI. ∞-CATEGORIES

A 0-simplex of N(C) is an object of C.
A 1-simplex of N(C) from x to y is a point of hom(x, y).
A 2-simplex of N(C) is the choice of

• a triplet of objects x0, x1, x2,
• choices of points fi,j ∈ hom(xi, xj) for i < j,
• and a choice of path in hom(x0, x2)

f12 ◦ f01 ∼ f02.

Note here we are using the topology in hom(x0, x2), and the defi-
nition of composition given from C.

Higher simplices are where the meat is at; these will be exposited in the
exercise.

Example VI.8.0.6 (The∞-category of spaces). Let Top be the category
of spaces that are, abstractly, homotopy equivalent to CW complexes. Then
Top is enriched over the category of topological spaces. By applying the
homotopy coherent nerve construction, we obtain an ∞-category Spaces.
We call this the∞-category of spaces. This might feel unnatural to you; see
Section VI.10

Example VI.8.0.7 (The ∞-category of ∞-categories). Let C be the
category of ∞-categories – objects are simplicial sets that happen to be
∞-categories, and morphisms are maps of simplicial sets. Then C can be
enriched over simplicial sets – given two objects X and Y , the simplicial set

{homsSet(X ×∆k, Y )}k≥0

turns out to be a Kan complex. Then one can take the coherent nerve of
this Kan-complex-enriched category. We call this nerve the ∞-category of
∞-categories, and denote it

Cat∞ .

Yes, there are size issues – meaning yes, they can be overcome in the stan-
dard ways. I think the most popular method is by utilizing the theory of
Grothendieck universes so we know what we mean by small, big, large, huge,
et cetera, sets.10

Example VI.8.0.8 (dg- and A∞-categories). Let A be a dg-category.
One can define an ∞-category, called the dg-nerve of A

Ndg(A)

as follows.11

The 0-simplices of Ndg(A) are the objects of A.

10That Grothendieck universes – i.e., a collection of “sets” closed under natural op-
erations – exist is equivalent to the axiom of existence of inaccessible cardinals. This is a
common assumption for many logicians, though I do not know how popular it is in the
large.

11This construction is due to Lurie and can be found in his Higher Algebra book,
available freely on this website.
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A 1-simplex of Ndg(A) is the data of a triplet

(x, y, f)

where x, y are objects and f ∈ hom0(x, y) is a degree 0 element of the hom
chain complexes for which df = 0.

A 2-simplex of Ndg(A) is the data of a tuple

(x0, x1, x2, fi,j : xi → xj(i ≤ j), H)

where the fi,j : xi → xj are 1-simplices as before, for i < j, and H ∈
hom1(x0, x2) of degree 1 for which

dH = f02 − f12 ◦ f01.

The higher-dimensional simplices are spelled out in Exercise VI.26. The
A∞-analogue is due to Faonte and to Tanaka independently.

VI.9. (Not covered in spoken lecture) The downside: degeneracy
maps

There is, objectively, one very annoying part of the definition of ∞-
categories. Because an ∞-category is a simplicial set, one must specifies
degeneracy maps. In particular, for any object X ∈ C0, one must provide
what one means to be “the” identity morphism of X.

This is dissatisfying for the following reason: Units do not need to be
unique; they are only unique up to homotopy. Moreover, whether something
is unital is a property, not extra data to specify.

On the other hand, it is known from the classical theory of simplicial sets
that degeneracy maps are incredibly useful for relating the combinatorics
of simplicial sets to the homotopy theory of spaces. In a world without
degeneracies, the homotopy type of the direct product X×Y will not recover
the direct product of the homotopy types modeled by X and Y .

There are solutions to this issue. Steimle12 showed that if a “simplicial
set with only face maps” (known as a semisimplicial set) looks like an ∞-
category, then indeed you can always equip it with degeneracy maps. And
Tanaka13 showed a similar result at the level of functors – if a map that
only respects face maps looks like it respects units, you can always define
a new map that does respect units, and respects the original images up to
homotopy.

I think it is fair to say that no model is perfect.

12Wolfgang Steimle, “Degeneracies in quasi-categories.” J. Homotopy Relat. Struct.
(2018) 13:703–714. https://doi.org/10.1007/s40062-018-0199-1.

13Hiro Lee Tanaka, “Functors (between ∞-categories) that aren’t strictly unital.”
Journal of Homotopy and Related Structures (2018) 13: 273–286. doi: 10.1007/s40062-
017-0182-2. arXiv:1606.05669.

https://doi.org/10.1007/s40062-018-0199-1
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VI.10. (Not covered in spoken lecture) Making important
∞-categories (spaces, chain complexes)

In Example VI.8.0.6 we constructed an ∞-category of spaces, but there
was something choice-dependent: Why did we choose (spaces homotopy
equivalent to) CW complexes as our objects? What if we want to consider
other objects?

There are indeed two common ways to make ∞-categories of very well-
studied classical categories.14 In such well-studied settings, one does often
single out a nice class of objects. So one approach is to make an∞-category
by applying the coherent nerve to a topologically enriched category of nice
objects.

Here is the second approach: One takes the category of all objects,
nice or not (e.g., all topological spaces). Then one localizes this category
with respect to all the equivalences we care about (e.g., weak homotopy
equivalences). It turns out that this localization is almost always equivalent
to the ∞-category constructed by the “nice objects” approach.

Remark VI.10.0.1. A subtle point here is that there is a natural notion
of localization whose input may be a category in the usual sense (i.e., have
no higher homotopy and all horn-fillers are unique) but whose output is an
∞-category (i.e., the horn-fillers may not be unique in the localization).

Note that I really mean we take the category of spaces, meaning I do
not even define a topology on mapping spaces, and I only define the set of
continuous maps. By localizing this ordinary category along weak homotopy
equivalences, I can recover the ∞-category of spaces (which does see the
homotopy groups of mapping spaces).

Remark VI.10.0.2. that the localization recovers the same ∞-category
of Spaces as defined above is most efficiently proven using the theory of model
categories, and Lurie’s work in relating model categories to ∞-categories.
See Proposition A.3.7.6, which states that presentable ∞-categories are the
same thing as combinatorial model categories.

Example VI.10.0.3. One can make an∞-category of left-bounded chain
complexes by applying the dg-nerve to a dg-category spanned by a nice col-
lection of chain complexes15 or one could take the category of all left-bounded
chain complexes and inverse quasi-equivalences. The two results are equiva-
lent.16 For unbounded chain complexes, see Section 1.3.5 of Higher Algebra;
there, the result that “taking the nerve of a category of nice objects is the
same thing as localizing the category of all objects” is Proposition 1.3.5.15.

14“Well-studied” is my way of gesturing at model categories.
15For details on this nice collection, see 1.3.2 of Higher Algebra. The dg nerve is later

in this lecture.
16Theorem 1.3.4.4 of Higher Algebra, where the result is proven for general abelian

categories satisfying an “enough projective objects” assumptions.
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VI.11. (Not covered in spoken lecture) Localizations

Remark VI.11.0.1. Given any simplicial set A, there is a natural way
to make it into an ∞-category. Informally, each time you see a horn you
cannot fill, you add on a simplex that fills it. One has to be rather careful
doing this, but probably the one-line homotopy-theorist proof is that there
is a model structure on all simplicial sets for which the∞-categories are the
fibrant objects.

Example VI.11.0.2 (Localization). Let C be an ∞-category. And let
W ⊂ C be a subsimplicial set, which I will just assume is a collection of edge
for this example. As in Remark VI.6.0.4, one can make a Kan complex |W |,
which one can think of as a simplicial set obtained by turning a directed edge
into a giant simplicial set with an edge going the other direction, 2-simplices
indicating that the original directed edge and the new edge are homotpoy
inverse to each other, 3-simplices indicating that the natural compositions
of these edges do not give rise to any new data up to homotopy, et cetera.

So consider the collection of three simplicial sets, with two maps, drawn
as follows:

W //

��

C

|W |.
Because simplicial sets consist of functors into the category of Sets, we can
do anything in simplicial sets we can do for sets – in particular, we can glue
simplicial sets together. So we can glue C and |W | together along W . This
produces a new simplicial set, but it may not have any horn-filling properties.
By Remark VI.11.0.1, there is a natural way to make this simplicial set into
an ∞-category.17 We call this ∞-category

C[W−1]

and call it the localization of C along W . In a concrete way, this is the
universal ∞-category obtained by inverting W in C.

VI.12. (Not covered in spoken lecture) Limits and colimits inside
an ∞-category

It can always seem incredibly vague when listening to somebody define
what a co/limit ought to be in higher category theory – some universal
thing that is initial/terminal up to some contractible choice, they say, and
the hands wave aflutter. For a few decades, many students were just given
models of homotopy limits/colimits for particular examples, and the models
were natural enough that some version of the universal property certainly
seemed to hold.

17If you are into model categories already, you can think of this new simplicial set as
the homotopy pushout of the diagram.
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Here we will define the notion of colimits in an ∞-category (without
hand-waving). The notion of limits is dual – for example, one could take
colimits in Cop, or define slice categories and initial objects in a natural way.

Remark VI.12.0.1. Note that I just say limit and colimit; I do not say
homotopy limit and homotopy colimit. I could, but they would be synonyms
in an∞-category. Indeed, because there is no notion of “strict composition,”
one can’t even define a notion of a (strict) limit/colimit.

The confusion often arises because something like the ∞-category of
spaces is often thought of as starting with an actual category of spaces and
then souping it up somehow; because of these strict origins, one sometimes
likes to distinguish between classical constructions (which are often co/limits
in a strict sense) and more homotopical constructions of homotopy co/limits.

In our lectures, we only ever constructed sequential colimits, and because
all the maps in our sequences of spaces were nice inclusions, it turns out the
classical/strict colimit, otherwise known as increasing union, models exactly
the homotopy colimit.

Importantly, our Σ∞-Ω∞ adjunction was an adjunction of∞-categories.
In particular, Σ∞ preserves (homotopy) colimits inside the ∞-category of
spaces and of spectra.

Remark VI.12.0.2. When you see hand-waving by an expert in a talk
or conversation – especially about limits and colimits – I assure you that
the definitions are known. I bring up hand-waving not as a criticism of
presentation, but an observation that we do sometimes have to remain vague
for sake of time (and an acknowledge of how ∞-categories can seem to the
non-user world). But now there is time to write and read, so I will write for
you a version of what is already in Higher Topos theory, Section 1.2.13.

VI.12.1. Limits and colimits in categories. Fix a category C. Fix
another category D, where we think of D as some “shape” that a diagram
can be in.

Example VI.12.1.1. Let D be the category consisting of three objects
0, 1, 1′ where there are exactly two non-identity morphisms: 0 → 1 and
0 → 1′. If you like, D is a poset with relations 0 ≤ 1 and 0 ≤ 1′ (with 1, 1′

unrelated).
Then a functor from D to C is exactly the data of a diagram of the form

X0
//

��

X1

X ′
1

inside C. Here, X0, X1, X1’ are objects of C and the arrows are morphisms
in C. So if C were the category of abelian gropus, this is the data of three
abelian groups and two group homomorphisms.
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Now fix a functor F : D→ C. Given F , we can define a “slice” category
as follows.

Definition VI.12.1.2 (The cone on D; the slice category). Let D▷ de-
note the category obtained from D by adjoining a new object – which I will
call ∗ – and declaring that homD(D, ∗) is a one-point set (for any object
D ∈ ObD). We call this the cone on D.

We declare the slice category

CD/, or CF/

(these are different notations for the same thing) to be the category of func-
tors

G : D▷ → C

for which
G|D = F

where the lefthand side is the restriction of G to the subcategory D ⊂ D▷.
So the slice category consists of functors G that extend F to one new point.
A morphism in the slice category is a natural transformation from an G to
another G′ for which the natural transformation is the identity along D.

Example VI.12.1.3. Let D be the diagram from Example VI.12.1.1.
Then D▷ is a category equivalent to the poset [1]× [1]. And a functor from
D▷ to C is just a commutative square in C.

In particular, if we fix a functor F : D → C and, a functor G : D◁ → C

that extends F is simply a commutative square

X0
//

��

X1

��
X ′

1
// W.

A morphism from G to G′ is a diagram that commutes in C, as follows:

X0
//

��

X1

��

��

X ′
1

//

((

W
η

!!
W ′

Given G and G′, the arrow η above uniquely determines the map from G
to G′. This is because of the definition of “commuting diagram,” or the
uniqueness of horn-fillers.

Definition VI.12.1.4. An object I of a category S is called initial if for
every object J ∈ S, we have that homS(I, J) is a one-point set. In other
words, I is called initial if it admits a unique morphism to any other object.
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Remark VI.12.1.5. Initial objects are not unique, but they are unique
up to unique isomorphism. You should make sure you understand what this
means.

Definition VI.12.1.6. Fix a functor F : D → C. A colimit for F is an
initial object in CF/.

Example VI.12.1.7. In our working example, suppose G is a colimit –
i.e., an initial object in CF/. In particular, W determines an object equipped
with a map from X0, X1, X

′
1 making the relevant square commute. What

the definition of initial object tells us is that if we have any other G′ –
i.e., any other object W ′ equipped with maps from the Xi, X

′
1 making the

relevant square commute – then there exists a unique morphism η making
the resulting triagnles commute:

X0
//

��

X1

��

��

X ′
1

//

((

W
∃!η

!!
W ′

If you have not see colimits before, the Exercise VI.27 will give you some
examples.

Dually, one can define a slice category C/F of objects mapping to the
diagram given by F , and define a limit as a terminal category in C/F .

VI.12.2. Limits/colimits in∞-categories. In classical category the-
ory, we only need the two ideas of (i) slice categories, and (ii) terminal
objects, to define the notion of colimit. So let’s define these ideas for ∞-
categories.

Definition VI.12.2.1. Given D an∞-category, let D▷ be the simplicial
set obtained from D by adjoining a terminal vertex to D.

Fix a map of simplicial sets F : D → C to an ∞-category C. We define
the slice ∞-category

CF/

to be the simplicial set whose k-simplices are as follows:

Maps of simplicial sets G : D▷ ×∆k → C for which G|D×∆k ≡ F .

In other words, we require that the restriction of G to D ×∆k ⊂ D▷ ×∆k

to equal the composition D×∆k → D
F−→ C.
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Example VI.12.2.2. In our working example, if C is an ∞-category, a
functor D▷ → C is now a diagram

X0
//

��

X1

��
X ′

1
// W

in C – but this diagram has no notion of commuting on the nose! This
combinatorial datum (of a functor D▷ → C) can be interpreted, healthily,
as the data of the above morphisms, together with a particular choice of
homotopy making the square commute up to homotopy.

Definition VI.12.2.3. Let S be an ∞-category. We say that an object
I ∈ S is initial if the mapping space18 homS(I, J) is contractible. (In this
setting, this is equivalent to saying that the Kan complex homS(I, J) has π0
given by a one-element set, and has all πk = 0 for k ≥ 1.)

Definition VI.12.2.4. Let C,D be ∞-categories and fix a functor F :
D→ C. Then a colimit for F is an initial object of CF/.

Remark VI.12.2.5. Just as in the classical setting, a given functor F :
D→ C may not admit a colimit.

Example VI.12.2.6. The most important example for us is that, in the
∞-category of pointed spaces, the pushout along the constant maps X → ∗
is ΣX.

Remark VI.12.2.7. Let BG→ C be a functor; i.e., an object of C with
a homotopy coherent G action. limits and colimits of such functors compute
homotopy fixed poin

VI.13. (Not covered in lecture) A∞-categories versus
∞-categories

I was asked what the difference is betweenA∞-categories and∞-categories.
For this, I have to be explicit who I’m talking to.

If you are a homotopy theorist through and through, you might live a
life where you’d be surprised the two terms even exist. ∞-categories should
be A∞-categories, and vice versa.

But if you live in the communities converging at our conference, your
vocabulary is different. A∞-categories are, to you, absolutely some data
involving objects, chain complexes, and formulas having to do with a cellular
model of the Stasheff associahedra. On the other hand, ∞-categories are
simplicial sets satisfying an inner-horn-filling condition.

So let us list some salient differences.

18See Exercise VI.22



D
ra
ft

216 VI. ∞-CATEGORIES

(a) A∞-categories are linear, or more precisely, linearly enriched. By this,
I mean something very simple: Given two morphisms f, g in an A∞-
category (with same degree, and with domain and codomain) then they
are elements of a chain complex. In particular, we know how to add
them.

In contrast, ∞-categories come with no data on how to “add edges”
with same domain and codomain.19

(b) A∞-categories come with a specific composition. Namely, an m2 oper-
ation. In contrast, ∞-categories only assert that one is specified with
a family of triangles that could be interpreted as a homotopy-coherent
diagram, but never privileges a particular triangle as exhibiting a com-
position.

(c) Likewise, A∞-categories come equipped with specific homotopies real-
izing homotopy-associativity. As an example, that dm3 = m2(m2 ⊗
id) −m2(id⊗m2) is prescribed data of an m3 that homotopes between
the two natural associated products.20 In contrast, ∞-categories do not
privilege one tetrahedron over another as realizing an associativity up
to homotopy.

19Instead, some ∞-categories have a property that naturally leads to such an addition;
specifically, to a structure of spectrum on the mapping spaces. See Exercise VI.29.

20Note, by the way, that there could be plenty of other elements H ∈ hom1 for whom
dH could equal m2(m2 ⊗ id) − m2(id⊗m2). The A∞ category, by defihnition, does not
care about incorporating such H in its definition.
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VI.14. Simplicial relations

Verify that the (dual of) the simplicial relations (Remark VI.2.0.9) are
satisfied by the morphisms σi and δi in ∆.

VI.15. The nerve of a category

For sake of notational sanity, we will let N(C) denote the nerve of the
category C. So, for example, the set of k-simplices

N(C)k

denotes the collection of commutative k-simplices in C.

(a) Show that any functor f : C → D gives rise to a map of simplicial sets
N(C)→ N(D).

(b) Conversely, show that any map of simplicial setsN(C)→ N(D) uniquely
determines a functor C→ D.

(c) Show that the nerve operation N defines a fully faithful functor from
the category of categories to the category of simplicial sets. (Note that
the category of categories, in this exercise, does not have the data of
natural transformations.)

(d) Show that a map of simplicial sets ∆1×N(C)→ N(D) is the same thing
as a natural transformation.

VI.16. Categories using horn-fillers

Prove Theorem VI.5.0.1. You can ignore set issues if you like and con-
sider only (small) simplicial sets and small categories.

VI.17. Maps from simplices are determined by their faces

(a) Any object X ∈ C defines a functor Cop → Sets by homC(−, X). (This
is the functor defining the Yoneda embedding.) This is the functor
represented by X. Let C = ∆ and X = [k]. Show that the functor
represented by [k] is the nerve of the poset [k]. (We are using the fact
that any poset can be considered a category here.)

Notation VI.17.0.1. We let ∆k denote the simplicial set repre-
sented by [k]. We call it the k-simplex.

217
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Warning VI.17.0.2. We are using ∆k for both the topological sim-
plex and the simplicial set. Sometimes, we will write |∆k| to denote the
topological simplex when caution is necessary.

(b) Fix a simplicial set W . Using the Yoneda Lemma if you like, show that
the set of k-simplices Wk is the same thing as the set of simplicial set
maps ∆k →W .

Definition VI.17.0.3. Let ∆inj ⊂ ∆ be the (not full) subcategory
with the same objects, but with only injective poset maps as morphisms.
Then a functor ∆op

inj → Sets is called a semisimplicial set. A map of
semisimplicial sets is a natural transformation of such functors.

Note that any simplicial set gives rise to a semisimplicial set, simply
by forgetting degeneracies.

(c) Going the other way, show that any semisimplicial set admits an “initial”
simplicial set obtained by freely adjoining degeneracies. A convenient,
but perhaps intimidating, way to phrase this construction is as follows:
Given a functor ∆op

inj → Sets, you can left Kan extend this functor along

the inclusion ∆op
inj → ∆op.

Remark VI.17.0.4. While left Kan extensions can sound intimidat-
ing at first, I strongly encourage you to get used to them. They are
incredibly powerful devices, and they are also universal in the following
sense: left Kan extension is the left adjoint to restriction (e.g., left ad-
joint to the process of forgetting a simplicial set to a semisimplicial set).
Right Kan extension is a right adjoint to restriction.

(d) Convince yourself that any not-necessarily-unital category gives rise to
a nerve naturally interpretable as a semisimplicial set.

(e) Let [k]′ be the non-unital category obtained by discarding all identity
morphisms from [k]. Show that N([k]) is the “free” simplicial set ob-
tained from the semisimplicial set [k′].

(f) Convince yourself that (even though the k-simplex has infinitely many
simplices) a k-simplex ∆k → X to a simplicial set X can be understood
purely by what it does on the non-degenerate faces of ∆k. (Note there
are finitely many such faces in ∆k.)

VI.18. Homotopy groups of Kan complexes

If Kan complexes are like spaces, there ought to be a definition for the
homotopy groups of a Kan complex.

Definition VI.18.0.1. Let X be a Kan complex and x0 ∈ X0 a vertex.
We define the quotient set

πn(X,x0) := {∆n → X s.t. ∂∆n ≡ x0}/ ∼

as follows.
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First – before quotienting – we consider the set of all maps ∆n → X such
that all the boundary faces of ∆n are taken to the degenerate (n−1)-simplex
given by x0. (Pedantically, this degenerate simplex is given by s0s0 . . . s0x0.)

Now consider two functions f, g : ∆n → X satisfying the conditions of
the previous paragraph. We define a homotopy form f to g to be a map

H : ∆n+1 → X

satisfying the following boundary conditions21:

• d0H = f
• d1H = g
• diH ≡ x0 for all i ≥ 2. (This is again lazy notation for saying that
diH is given by the degenerate simplex s0 . . . s0x0.)

We mod out by the equivalence relation of homotopy.

(a) Verify that when X = Sing(W ) is the singular complex of a space W ,
a morphism f : ∆n → X with ∂∆n ≡ x0 can be interpreted as a map
from a sphere to W based at x0.

(b) Verify that homotopy is an equivalence relation.
(c) When X = Sing(W ), verify that π0(X) – which you can define with the

obvious modifications – is naturally in bijection with π0(W ).
(d) For k = 1, and for any Kan complex X, verify that π1(X,x0) is a group.
(e) For k ≥ 2, and for any Kan complex X, verify that π2(X,x0) is an

abelian group.
(f) When X = Sing(W ), it turns out that πn(X,x0) ∼= πn(W,x0) as abelian

groups for all n and all x0. Prove it.

VI.19. Simplicial groups

(a) Show that any simplicial group is a Kan complex.
(b) Let A be an abelian group. Construct a simplicial abelian group whose

set of k-simplices is given by A×k (so there is a unique 0-simplex) and
where most of the face maps use the group addition.

VI.20. ∞-category basics: Homotopies between morphisms, and
homotopy uniqueness of horn-fillers

Fix an ∞-category C.

(a) Fix two edges f, g ∈ C1 with the same domain and codomain. (That
is, dif = dig for i = 0, 1.) We define a homotopy from f to g to be a
2-simplex

H : ∆2 → C

for which d0H is degenerate, and d1H = f, d2H = g.
Fixing a domain and codomain vertex, show that the notion of ho-

motopy between two morphisms is an equivalence relation.

21There are various riffs on this by swapping the role of d0 and d1 for other di and
dj .
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Remark VI.20.0.1. One could have instead defined a homotopy to
be a 2-simplex H for which d2H is degenerate, and d0H = f , d1H = g.

Remark VI.20.0.2. More generally, given two k-simplices g and h
with appropriate boundaries, one can say a homotopy between g and h is
a (k+1)-simplex A with two boundaries given by g and h, and all other
boundaries given by degenerate simplices. You should think about this
when g and h are 2-simplices to give yourself a feel for how this works.

(b) Fix two edges f01, f12 so that fij is an edge from an object xi to an
object xj . Show that if g and h are i = 1th face of 2-simplices G and H
for which

d0H = d0G = f12 andd2H = d2G = f01

then g and h are homotopic.

Remark VI.20.0.3. This shows – by interpreting G and H as horn-
fillers, and hence as putative compositions – that there is a well-defined
composition up to homotopy.

In fact, one can show that the space of horn fillers is contractible.
So putative compositions are in fact unique up to contractible choice of
homotopy.

VI.21. From simplicial sets to spaces

The very definition of simplicial set was motivated as a prescription for
taking some collection of simplices, and gluing boundary faces in a nice
way. Thus there is a strong suggestion that any simplicial set should define,
naturally, a topological space glued out of simplices.

Look up the definition of geometric realization |X| of a simplicial set X.
Convince yourself that there are natural maps

|Sing(W )| →W and X → Sing(|X|)
and that they induce isomorphisms on homotopy groups.

VI.22. ∞-category basics: Mapping spaces

Generalizing the previous exercise, let me explain we can construct a
space (really, a Kan complex) of morphisms between any two objects.

Definition VI.22.0.1. Let C be an ∞-category, and fix two objects x
and y. The (left) mapping space of maps from x to y is defined as a simplicial
set whose k-simplices are

{a : ∆k+1 → C | a|{0} = x, and a|d0∆k+1 ≡ y}.
In other words, a k-simplex in the mapping space is a (k + 1)-simplex in C

whose 0th vertex is sent to x, and whose 0th face is the degenerate simplex
at y. We will denote this Kan complex by

homC(x, y).
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Remark VI.22.0.2. This simplicial set is a Kan complex (hence deserves
to be thought of as a space) – this is Exercise ??.

Remark VI.22.0.3. There is another model for mapping spaces – by
taking those maps ∆k+1 → C for which the (k+1)st face is degenerate at x,
and those k+1st vertex has value y. It is a theorem that these two mapping
spaces are homotopy equivalent. See 1.2.2 of Higher Topos Theory.

(a) When C is an ∞-category, Show that homC(x, y) is a Kan complex.
(b) Let C be a topologically enriched category. Is there a natural map

between the mapping space from x to y in N(C), and the space of
morphisms in C from x to y?

(c) Show that if f : C→ D is a functor of ∞-categories, there is an induced
map of Kan complexes homC(x, y)→ homD(f(x), f(y)).

VI.23. ∞-category basics: Functor categories

Because a simplicial set is just a functor to sets, all the nice proper-
ties about the category of sets are inherited. (This follows the basic math
principles that “the collection of maps into BLAH” inherits the structure of
BLAH.)

In particular, given two simplicial sets X and Y , we define their product
simplicial set to have set of k-simplices given by

(X × Y )k = Xk × Yk.

I leave it to you to figure out the face and degeneracy maps, or more gener-
ally, what to do on morphisms [k]→ [k′]. Likewise, there are limits, colimits,
et cetera, of simplicial sets, computed level-wise. (The colimit of a diagram
Xα of simplicial sets is computed by declaring the k-simplex set to be the
colimit of the induced diagram (Xα)k of sets.)

Definition VI.23.0.1. Let C and D be simplicial sets. We will define

Fun(C,D)

to be a new simplicial set, whose k-simplices are given by

homsSets(C×∆k,D).

Here we’ll see how useful the product is.

(a) Convince yourself that if D is an ∞-category, then so is Fun(C,D).
(b) Now let C also be an∞-category. Explain the sense in which a 0-simplex

of Fun(C,D) is a functor from C to D. Explain the sense in which a
1-simplex is a natural transformation. Explain the sense in which a
2-simplex is homotopy-coherent diagram of natural transformations.

Remark VI.23.0.2. Many models of higher category theory lack the ease
with which one can “enrich” over itself. The above is one very appealing
feature of the model of ∞-categories. The other compelling feature is the
theory of fibrations, which I hope to get to.
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VI.24. ∞-category basics: Equivalences in an ∞-category

Definition VI.24.0.1. Let C be an∞-category and fix an edge f : x→ y
in C. We say that f is an equivalence if there exists an edge g : y → x and
two 2-simplices A,B satisfying

d1A = s0x, d2A = f, d0A = g,

and

d0B = s0y, d0B = f, d2B = g.

(a) Convince yourself that the above definition is telling you that f is a
morphism which is invertible up to homotopy.

(b) You may wonder about the data of g,A,B. Show that any other data
g′, A′, B′ exhibiting f as an equivalence is homotopic to g,A,B. (See
Remark VI.20.0.2.) In particular, any two homotopy inverses to f are
homotopic.

Remark VI.24.0.2. More generally, one can show that the space of
(g,A,B) exhibiting homotopy inverses to f is a contractible space.

(c) Using the ∞-category of ∞-categories and this exercise, write down
what you would mean by an equivalence of ∞-categories.

(d) It is a theorem that equivalences of ∞-categories can be detected alge-
braically. Put another way, suppose you have a functor f : C→ D such
that
(i) f is essentially surjective. This means that every object of D is

equivalent (in D) to an object in the image of f .
(ii) f is fully faithful. This means that for every pair of objects x, y ∈

ObC, the map

π0 homC(x, y)→ π0 homD(f(x), f(y))

is a bijection, and for every choice of connected component of
homC(x, y), the induced map

πk homC(x, y)→ πk homD(f(x), f(y))

is a bijection for all k ≥ 1.
Prove that if f is an equivalence in the sense of your previous solution,
then f is essentially surjective and fully faithful.

(e) It turns out that any functor between ∞-categories that is essentially
surjective and fully faithful is, in fact, an equivalence of ∞-categories.
(The easiest proof I know of this would use a model category structure on
simplicial sets where the fibrant objects are simplicial sets.) There is a
non-categorical version of this fact. Convince yourself of, or read a proof
of, Whitehead’s theorem: If a map between CW complexes induces an
isomorphism on all homotopy groups, then it admits a homotopy inverse.
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VI.25. The homotopy coherent nerve

We now exposit Example VI.8.0.5. Further reading is Section 1.1.5 of
Higher Topos Theory.

Notation VI.25.0.1 (The fattened simplex category). Let I ∼= [n] be a
linearly ordered, non-empty, finite set. Given two elements i ≤ j ∈ I, we let

Pi,j

consist of those subsets A ⊂ I that contain i and j, and only elements
between i and j.

Then Pi,j is a poset under inclusion of subsets, hence a category. We let
N(Pi,j) be the nerve.

We note there are maps of posets

Pi,j × Pj,k → Pi,k, (A,B) 7→ A
⋃

B

and hence maps

N(Pi,j)×N(Pj,k)→ N(Pi,k).

We let

C[∆n]

denote the category enriched in simplicial sets with objects i ∈ [n], and

hom(i, j) := N(Pi,j).

(a) Let C be a category enriched in topological spaces. By applying Sing to
every morphism space, obtain a category C ′ enriched in simplicial sets.

Definition VI.25.0.2. The homotopy coherent nerve of C is defined
to be the simplicial set

N(C)n := hom(C[∆n], C ′)

where the set of n-simplices is given by the collection of functors (of
simplicially enriched categories) from the fact n-simplex category to C ′.

(b) Recover the descriptions of N(C)n for n = 0, 1, 2 in Example VI.8.0.5.
(c) Draw a picture describing what a 3-simplex of N(C) is.
(d) Show that a functor C → D of Top-enriched categories gives rise to a

functor N(C)→ N(D) of ∞-categories.
(e) Exhibit examples of C and D and a functor N(C) → N(D) that does

not arise from a Top-enriched functor C → D.

VI.26. The dg- and A∞-nerves

(a) Look up the dg nerve construction in Lurie’s Higher Algebra22 Construc-
tion 1.3.1.6.

(b) Verify the dg-nerve is an ∞-category.

22https://www.math.ias.edu/~lurie/papers/HA.pdf

https://www.math.ias.edu/~lurie/papers/HA.pdf
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(c) Let A be a dg-category and fix two objects x, y. Verify that πk of the
morphism space in N(A) from x to y is isomorphic to the homology
groups Hk homA(x, y) for k ≥ 0.

(d) Verify that a functor of dg-categories gives rise to a functor between
their dg-nerves.

(e) Look up in either Faonte23 or Tanaka’s24 works the definition of an A∞-
nerve of an A∞-category. Verify that the A∞-nerve of an A∞-category
is an ∞-category.

VI.27. Colimits, classically

Here are some examples of colimits in some common classical settings.
These examples are incredibly important, no matter how ∞-categorical you
want to get.

(a) Suppose D = Z is the poset of integers. A functor D → C is thus the
data of objects Xi, i ∈ Z and maps Xi → Xi+1. When C = Sets, show
that a colimit for this diagram is (in bijection with) the increasing union⋃

iXi (glued along the maps fi).
(b) Suppose thatD = [1]×[1]\{(1, 1)} is the diagram from Example VI.12.1.1.

A colimit for a functorD→ C is called a pushout. Show that the pushout
for C = Sets is given by the set X1

⋃
X0

X ′
1 (following the notation from

Example VI.12.1.1).
(c) Let C = Ab be the category of abelian groups. Show that the pushout

is given by the quotient of X1 ⊕ X ′
1 by the image of the embedding

X0 → X1 ⊕X ′
1.

(d) Suppose D is a category with two objects and only identity morphisms
(so the two objects have no morphisms between each other). A functor
D → C is just the data of two objects X1, X2. Show that if C = Sets,
the colimit is X1

∐
X2 (disjoint union of sets). Show that if C = Ab, the

colimit is X1 ⊕X2 (the direct sum).

VI.28. Homotopy colimit basics

For the notation here, I refer you to Section VI.12.2.

(a) Let D be a simplicial set. Come up with a definition of D▷. (As a hint,
your definition should have a map of simplicial sets down to ∆1, where
the fiber above 0 is D and the fiber above 1 is ∆0. As another hint, your
answer should recover – when D is the nerve of an ordinary category –
the nerve of the classical cD▷.)

(b) Convince yourself that CF/ is an ∞-category.

23Giovanni Faonte, “Simplicial nerve of an A-infinity category.” Theory and Appli-
cations of Categories, Vol. 32, No. 2, 2017, pp. 31–52.

24Hiro Lee Tanaka, “The Fukaya category pairs with Lagrangian cobordisms.”
arXiv:1607.04976.
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(c) Fix a pointed topological space X (a CW complex if you like), and con-
sider the diagram given by the continuous maps ∗ ← X → ∗. Convince
yourself that the colimit of this diagram in the∞-category of spaces (i.e.,
the pushout in the ∞-categorical sense, i.e., the homotopy pushout in a
colloquial sense) is homotopy equivalent to the reduced suspension of X.
(Hint: What does it mean to give two maps from X →W ′ that factors
through a point, and to give a homotopy between two such maps?)

(d) In contrast, show that the ordinary colimit of ∗ ← X → ∗ is just a point.

VI.29. Stable ∞-categories

Another big application of ∞-categories is a resolution to an age-old
problem: That Verdier’s notion of “triangulated category” is clunky and
not suitable for many applications. For example, if you want to prove the
intuitive fact that DbCoh of variaties should glue when you glue varieties
together, you quickly realize that you need more data to glue complexes
(the objects) together and to characterized the glued-together complexes in
a useful way.

The notion of a stable ∞-category25 is one in which these issues are
solved for the following reason:

(1) Stability is a property, not extra structure. 26

(2) The ∞-category of stable ∞-categories has all limits and colimits;
gluing these ∞-categories can hence be phrased as computing an
appropriate limit of ∞-categories. In contrast, the (ordinary27)
category of triangulated categories lacks this property.

Definition VI.29.0.1. An ∞-category C is called stable if

(1) C has an object that is both initial and stable – i.e., a zero object.
(2) C admits all finite limits and finite colimits.
(3) A diagram ∆1 ×∆1 → C is a colimit diagram (i.e., a pushout dia-

gram) if and only if it is a limit diagram (i.e., a pullback diagram).
In other words, pushout diagrams are pullback diagrams.28

25The canonical reference is Chapter 1 of Lurie’s Higher Algebra. I highly recommend
perusing it.

26In contrast, a triangulated category has some structures satisfying some axioms.
The main difference is that stability is defined via limits/colimits, which are ideas that only
involve testing against yes/no questions. But a triangulated structure more or less forces
your category to forget limits/colimits, and instead label the diagrams you would want to
be limits/colimits, while forgetting the homotopical structures that define limits/colimits
to begin with!

27Because triangulated structures lack homotopical structures, there is no natural
notion of an ∞-category of triangulated categories. Indeed, the modern analogue of such
a thing is the ∞-category of stable ∞-categories.

28This last axiom is by far the most important feature of stability.
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Example VI.29.0.2. The most basic pushout one could take is the
pushout along the zero morphisms

X //

��

∗

∗
or pullback along the zero morphisms

∗

��
∗ // X.

(To even draw these diagrams, we are using the property that zero objects
exist – we are using ∗ to denote the zero object). Let us denote the pullback
by X[−1] and the pushout by X[1]. Then the axiom of stability implies that
X[1][−1] ≃ X – in other words, the operation of sending an object X to
X[1] (defined via pushouts along the zero map!) is an invertible operation
with inverse [−1].

(a) In the ∞-category of pointed spaces, show that the pullback/pushout
of the diagrams in Example VI.29.0.2 recover ΩX and ΣX. Find an
example of a pointed space for which ΩΣX, or ΣΩX, is not homotopy
equivalent to X. Conclude that the∞-category of pointed spaces is not
stable.

(b) Convince yourself that for any ∞-category C, and for any diagram F :
D → D, and for any object Y of C, there is a natural map of spaces
(really, Kan complexes)

homC(W, lim
d∈D

F (d))→ lim
d∈D

homC(W,F (d))

which is an equivalence.
(c) Conclude that X[−1] represents the functor ΩhomC(,−X).
(d) Conclude that for any stable∞-category C and any two objects W,X ∈

C, the space homC(X,Y ) can be given the structure of a spectrum.29

(e) It turns out that the last axiom of stability (that pushouts are pullbacks)
is equivalent to the axiom that the functor X 7→ X[−1] is invertible.30

Using this fact, convince yourself that the ∞-category of spectra is sta-
ble.

(f) Look up the definition of triangulated category. Convince yourself that
if we replace a stable ∞-category C with a category hoCwith the same
set of objects, but where homhoC(x, y) = π0 homC(x, y), then hoC is a
triangulated category. See also Section 1.1.2 of Higher Algebra.

29In fact, any stable ∞-category is enriched in spectra – the hard part here is defining
what one means by enrichment.

30Corollary 1.4.2.27 of Higher Algebra.
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LECTURE VII

Fibrations of ∞-categories and symmetric
monoidal ∞-categories

Be running up that road
Be running up that hill

Be running up that building

– Kate Bush1

Last time we saw some advantages of ∞-categories:

(1) ∞-categories are presented by a concrete combinatorial theory. The
definition of functor is also combinatorial and concrete.

(2) ∞-categories allow us to generalize all classical categorical ideas
like limits and colimits. Moreover, the notion of functor allows us
to speak of strictly commuting diagrams and homotopy coherent
diagrams at the same time.

(3) There are concrete ways to talk about localizations, and about
functor ∞-categories. It is also easy to construct the ∞-category
of ∞-categories.

If none of these seem like advantages to you, that’s okay. Like so many
technological advances in society, the utility is only clear if you have occasion
to use the technology.

Today we will try to see another huge advantage: ∞-categories have a
theory of fibrations.

Fibrations allow us to make incredibly useful constructions – by looking
at pullbacks, at sections, et cetera – of important ideas. Moreover, just as
“a family of spaces indexed by a base space B” is the same as a fibration or
a bundle over B (in the classical theory of spaces) we’ll see that “a family
of categories indexed by a base category C” – otherwise known as a functor
from the∞-category B to the∞-category of∞-categories – can be modeled
by the notion of a coCartesian fibratoin.

1There is no particular meaning I have in mind for this quote; I was just listening to
this song during my writing this week. You can blame Stranger Things.

227
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One amazing application of fibrations is that fibrations allow us to give
non-trivial characterizations of limits and colimits in the ∞-category of ∞-
categories. I will not get to that in spoken lecture, but I hope to write up
something later for your perusal.

If time allows, we will arrive also at the definition of ∞-operads and
symmetric monoidal ∞-categories. I hope to give you a very convincing
definition of a commutative algebra in a symmetric monoidal ∞-category;
this recovers what one would normally call an E∞-algebra. Secretly, the
hardest part here is motivating a category Fin∗ of finite pointed sets.

Of course, just getting to a definition can seem anticlimactic. But I will
make things less anticlimactic – by giving another definition (paradoxically).
Given a symmetric monoidal ∞-category, a commutative algebra in it (or,
equivalently, an E∞-algebra in it) is simply a nice section of a coCartesian
fibration. Some formal conclusions are immediate from the definitions.

Remark VII.0.0.1. I must admit that, in giving this last lecture, I am
starting to have in mind the student who has been reading, or wants to
read, some of Jacob Lurie’s writings. I want to clear some of the confusions
that might arise in reading such tomes alone (as I did often in my graduate
days), so that these notes at least might streamline the process, and provide
a companion to get you started on your journey.

And, to be honest, Lurie does an excellent job – at the start of each
chapter and section – to motivate what the overarching goals are. So my
lectures may not even contribute much! I hope you enjoy anyway.

VII.1. What is a symmetric monoidal ∞-category?

What should a symmetric monoidal ∞-category be? (If you aren’t fa-
miliar with the classical notion of symmetric monoidal category, see Re-
mark II.2.0.1.)

Roughly speaking, a symmetric monoidal category is like a commutative
monoid (or, commutative algebra) in categories. So let’s review what being
a “commutative monoid” is supposed to entail. It should consist of the data
of a single entity A, along with maps

(1) m : A×A→ A (the product),
(2) 1 : ∗ → A (the unit map),

and (classically) these data should satisfy some properties:

(a) A symmetric equivariance. That is, the diagram

(VII.1.1) A×A

##

swap // A×A

{{
A

should commute.
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(b) A unitality condition. Namely, the diagrams

A ≃ ∗ ×A
1×idA //

idA
))

A×A

��

A× ∗ ∼= A
idA ×1oo

idA
uu

A

(c) An associativity condition. Namely, the diagram

A×A×A
idA ×m //

m×idA
��

A×A

m
��

A×A
m // A

should commute.

You are by now used to the philosophy that, if I want some homotopical
or higher-categorical notion of a commutative monoid, I ought to replace
each of the diagrams above by some homotopy-commuting diagrams, so that
(for example) m is associative up to homotopy. And, we ought to specify
those homotopies – just as A∞-categories provide homotopies, and just as
En-algebras are provided with maps from the spaces En(k) to spell out the
precise homotopies realizing the intuitions of “commutative up to dimension
n− 1.”

At the same time, we quickly see that – just as we needed to consider
infinitely many horns – there is an infinite amount of data one would need
to track – if two elements at a time commute, what if we need to understand
how three elements at a time commute? Or N?

We begin writing down what we mean, but then we fear that (unless we
are clever about how to organize all the higher data) we enter hand-waving
territory. That would be bad for proving anything. So the key insight
will be, again, to nail down the combinatorics of what it means to be a
commutative algebra up to coherent homotopy. Let’s do this.

The resultant combinatorics will be incredibly simple and satisfying – we
just remove orderings from the things that organzied homotopy associativity.
That is, we remove the orders from the objects of ∆. And, for the sake of
unitality, we will also allow for the empty set. (You’ll see what I mean.)

VII.1.1. Finite sets, and functors out of their category.

Definition VII.1.1.1. We let Fin denote the category of finite sets (with
morphisms given by functions – yes, good old functions).

I know it seems quite silly to say “Hey, let’s explore the category of finite
sets with functions between finite sets.” I mean, aren’t we all familiar with
finite sets? We are, but for many of us, we may not have really thought of
the combinatorial structure they encode. So let’s explore.

Notation VII.1.1.2. Let C be an ∞-category, and fix a functor Z :
Fin→ C.
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Assumption VII.1.1.3 (An assumption we will see how to make more
natural). We will make a major assumption: That C has some notion2 of
“direct product” and that for a finite set I and an object A ∈ C, we have
an identification

Z(I) ∼= AI .

That is, Z(I) is the I-fold product of a fixed object I.

Remark VII.1.1.4. Note that when I = ∅, A∅ is some object universal
for maps into 0 copies of A — that is, given no data, any category has a
unique map to A∅. Thus Z(∅) must be a terminal object.

Because any object I is in bijection with the set n with elements {1, . . . , n},
I will be slightly more concrete and only write out what such a functor Z
encodes on objects of the form n.

Example VII.1.1.5 (n = 0). Let 0 = ∅. Then there are unique mor-
phisms 0→ n for any n, and in particular, we have a map

Z(0)→ Z(1)

i.e., a map
∗ → A

where we let ∗ denote the empty product – an initial object in our case. We
will find that this is a unit map in Example VII.1.1.8.

Example VII.1.1.6. For any n, there is a unique map n → 1. In par-
ticular, the n = 2 case specifies a single morphism

m : A×A→ A.

Example VII.1.1.7 (The start of commutativity). Now, for n = 2, the
set 2 has a natural automorphism – swap. And the swap map fits into two
interesting diagrams in Fin:

2

��

swap // 2

��
1

, 2

id2 ��

swap // 2

swap
��

2

.

The second map says, of course, that the swap map is of order 2. Now, a
functor Fin → C (with Assumption VII.1.1.3), sends the above 2-simplices
to the following 2-simplices in C:

(VII.1.2) A2

m
  

Z(swap) // A2

m
~~

A

, A2

idA2   

Z(swap) // A2

Z(swap)~~
A2

.

2Really, we will assume that C has finite products, in the categorical sense. We talked
last time about how to talk about limits, and products are limits of diagrams given by
finite, discrete sets. The example of interest to us will be C = Cat∞, the ∞-category of
∞-categories, which does admit products (given by the usual product of simplicial sets).
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Here, the fact that the edges (i.e., faces) of the triangles are as indicated
follows from the fact that a simplicial set map is compatible with face maps.
The notation “idA2” means s0A

2; the 0th degeneracy maps. That we know
the edges labeled as such are degeneracy maps is a consequence of the fact
that a simplicial set map is compatible with degeneracy maps.

Let’s stare at (VII.1.3). We are so in business! The left triangle in (VII.1.3)
precisely tells us that m, and something that deserves to be called m pre-
composed with swap, are the same map up to a homotopy specified by the
triangle. This triangle should of course be compared with (VII.1.1).

Likewise, the righthand triangle in (VII.1.3) tells us that the swap map
is idempotent – this is an important condition one sees when defining, for
example, symmetric monoidal categories classically (where C = Cat and A
is a category).

But there is so much more. Why stop with n = 2? There are unique
maps n→ 1. Z of this map should be thought of as “a single, specified way
to take n elements in A and multiply them together.” We will explore this
single way in a moment, but let’s for now observe that it is very homotopy-
commutative-looking. Namely, take any automorphism (i.e., permutation)
σ : n→ n. Clearly σ fits into the following commutative diagrams in Fin:

n

��

σ // n

��
1

, n

idn ��

σ // n

σ−1
��

n

.

(We have denoted the inverse to σ by σ−1.) A functor Fin → C (with As-
sumption VII.1.1.3), sends the above 2-simplices to the following 2-simplices
in C:

(VII.1.3) An

m
  

Z(σ) // An

m
~~

A

, An

idAn !!

Z(σ) // An

Z(σ−1)}}
An

.

The lefthand triangle says that regardless of how we permute the input fac-
tors of m, we have a specified triangle showing that the permuted product is
homotopic to the given n-fold product. The righthand triangle is the begin-
nings of a symmetric group action on An; the diagram itself only illustrates
that Z(σ−1) is an inverse to Z(σ), up to a homotopy specified by the given
triangle.

Example VII.1.1.8 (Unitality). In Fin, the identity map of 1 factors in
two ways.

1 //

id
%%

2

��

1oo

id
yy

1
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where the horizontal arrows are the two ways to map 1 into 2 – missing the
element 1, or missing the element 2. Applying Z to the above diagram and
again under Assumption VII.1.1.3,

A ≃ ∗ ×A
1×idA //

idA
))

A×A

m
��

A× ∗ ∼= A
idA ×1oo

idA
uu

A

.

I think, by now, you don’t need me to explain the sense in which these
triangles exhibit that 1 is indeed a unit map up to homotopy. You can also
explore what homotopies this diagram enjoys when swapping the single copy
of A×A in the diagram.

Example VII.1.1.9 (Associativity and commutativity). I leave it to you
to explore the associativity encoded in Fin. For example, how can we factor
the single map 3→ 1? How do these factorizations play with the symmetric
group actions?

VII.1.2. A first guess. I hope that I’ve started to convince you that
the combinatorics of (the category of) finite sets has, amazingly, encoded
what it means to be a commutative algebra all along. This is an “obvious”
fact once you think of just how much commutativity has to do with per-
mutations, but is certainly hidden from us in most classes of algebra. This
is perhaps an artifact of the truth that – without higher homotopies – one
rarely needs to contemplate finite sets of cardinality larger than 3. (After
all, even for multiplying 17 elements together, the strict notions of commu-
tativity and associativity allows us to worry only about parenthesizing 3
elements and permuting 2 elements at a time.)

Let’s now take C = Cat∞ to be the ∞-category of ∞-categories.

Definition VII.1.2.1 (First attempt). A symmetric monoidal∞-category
is a functor

Z : Fin→ Cat∞

that sends any object I ∈ Fin to the product Z(1)I .

This is a perfectly fine definition, and is probably the most intuitive
definition you could have. But the requirement that Z(I) equal the I-fold
product of Z(1) – or even the data of such an identification – is clunky to
carry around. Indeed, our “first attempt” definition is unnatural in that
we should also demand that Z(I)’s action but Aut(I) match the action of
Aut(I) on Z(1)I . This will be a lot to “require” or a lot to encode using
additional data.

Thankfully, there is a notion of (i) coCartesian fibration that will help us
in the long run – once we also incorporate (ii) the combinatorics of adjoining
basepoints to our finite sets. This lecture is more packed than the others
because we need to explicate these two unfamiliar ideas for the audience.
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VII.2. Grothendieck constructions and fibrations

I will first start talking about the classical notion – an idea of fibrations
for categories.

Suppose you have a continuous function f : X0 → X1. We actually have
three equivalent ways to think about f :

(1) As a continuous function f : X0 → X1.
(2) As a functor from the category with two objects (called 0 and 1)

and a single non-identity morphism (from 0 to 1) to the category
of spaces.

(3) As a a space Cf (the mapping cylinder of f) equipped with a con-
tinuous map

Cf

p
��

∆1

to the 1-simplex ∆1, whose fiber above the initial vertex of ∆1 is
X0, whose fiber above the terminal vertex of ∆1 is given by X1,
and which satisfies a directed fibration property (which we do not
make precise here).

Picture of mapping cylinder
This has an analogue in the theory of categories. The following data all

turn out to be equivalent:

(1) Two categories X0 and X1, along with a functor f : X0 → X1.
(2) A functor from the category [1] with two objects (called 0 and 1)

and a single non-identity morphism (from 0 to 1) to the category
of categories.

(3) A category Cf (the Grothendieck construction of f) equipped with
a functor map

Cf

p
��

∆1

to the category ∆1 (which is the domain category appearing in (2)),
whose fiber above the initial vertex of ∆1 is X0, and whose fiber
above the terminal vertex of ∆1 is given by X1. p must satisfy a
fibration property we articulate in Section VII.4.

In case you haven’t see this sort of thing before, let me say that it’s
a “thing” in topology to try to replace certain complicated data with the
data of a single fibration-like map p over some base. This has the advantage
of allowing us to articulate compatibility of certain data as maps between
fibrations.
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Example VII.2.0.1. The data of a continuous G-action on a space X
gives rise to the data of a fibration p : E → BG whose fibers are X, and
where monodromies in BG precisely articulate the way in which G acts on
X. Indeed, homotopy coherent actions of G on X are precisely equivalent
to fibrations over BG with fiber X. Then a map E → E′ respecting p
and p′ is the same thing as a map X → X ′ equipped with data exhibiting
G-equivariance up to homotopy.

Construction VII.2.0.2 (Grothendieck construction). Let me tell you
how the Grothendieck construction Cf is defined. Fix a functor f : X0 → X1.
Then Cf is a category whose set of objects is ObX0

∐
ObX1. Given two

objects x, y ∈ Cf , we declare

homCf
(x, y) :=


homX0(x, y) x, y ∈ X0

homX1(x, y) x, y ∈ X1

∅ x ∈ X1, y ∈ X0

homX1(f(x), y) x ∈ X0, y ∈ X1.

One has an obvious functor from Cf to ∆1.
More generally, if f : B → Cat is a functor from a category B to the

category of categories, there is a natural functor p : Cf → B one can define
analogously, where the fiber above b is given by the category f(b). For two
objects x, y ∈ Cf , we declare

homCf
(x, y) := {(β : p(x)→ p(y), α ∈ homf(p(y))(f(β)(x), y)}.

Picture when B is the 2-simplex

Remark VII.2.0.3. The definition of a mapping cylinder for a continu-
ous map f : X → Y is quite concrete: You take a disjoint union of X ×∆1

and Y , then quotient.
You might wonder if a similar construction exists for simplicial sets.

Indeed, the description of the previous paragraph applies identically when
X and Y are simplicial sets. But, even when X and Y are (nerves of)
categories, the resulting mapping cylinder is not a (nerve of a) category. For
example, the edge from x to f(x), followed an edge from f(x) to y, does
not have a 2-simplex in the cylinder exhibiting some composition. One can
think of the Grothendieck construction as some universal way of turning a
mapping cylinder of functors into a category.

VII.3. coCartesian edges

So we’ve seen how to make a “fibration” (via the Grothendieck construc-
tion) from the data of any functor B → Cat.

What we’d love to do is to characterize the functors C → B that look
like they arise from a Grothendieck construction. Then we’d have a hope
of an equivalence of two theories: The theory of functors B → Cat, and
the theory of certain fibrations. Mathematicians have achieved this goal
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(Theorem VII.4.0.4). I want to lead you to the definition of term used for
these special fibrations – the coCartesian fibrations.

It turns out that one can characterize such fibrations very cleanly by
first understanding the case of B = ∆1. So let’s do it. Fix a functor

C

p
��

∆1

.

We notate by X and Y the fibers of p above 0 ∈ ∆1 and 1 ∈ ∆1, respectively.
The Grothendieck construction for a functor f : X → Y has the following

property: For a given object x in the fiber of p above 0, there is a collection
of preferred morphisms from x through which any other morphism to an
object y above 1 must factor.

For example, let e be the edge from x to f(x) corresponding to the
morphism idf(x). Then – if y is an object of Y – any morphism g : x→ y in
Cf must factor as g′ ◦ e for some g′ : f(x)→ y.

Upshot. For any object x, there is a “universal edge” e such that any
function out of x with a ∆1/horizontal direction is factored by e.

Put another way, fixing e, and given the following solid arrow h in Cf ,
there always exists a dashed arrow rendering the diagram commutative.

(VII.3.1) x0
e //

h   

y1

∃
��
y2

(The letter x indicates you are in the fiber above 0 ∈ ∆1, while the letter y
indicates you are in the fiber above 1 ∈ ∆1. in the diagram which vertex of
∆1 the objects live over.)

Remark VII.3.0.1. Such universal edges are not unique. Indeed, any
edge corresponding to an automorphism of f(x) would fit the bill – for
example, if you fix an automorphism σ of f(x), the map from x0 to y1 = f(x)
given by σ would also factor all other edges h.

That any two such universal edges are related by automorphisms is a
general phenomenon. Indeed, these universal edges are related by a unique
automorphism – that universal objects are only unique up to unique equiva-
lence is a familiar phenomenon in category theory (e.g., limits and colimits).

Remark VII.3.0.2. That the choice of e is not unique is another sign of
the flexibility of these fibrations: A given fibration might represent several
different functors (essentially by saying which e’s you prioritize), but they
will all be equivalent up to natural isomorphism.

Another illustration of this phenomenon is as follows: Even if you know
the functor ∆1 → Cat, the Grothendieck construction – as an isomorphism
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class of a category – forgets which of the locally p-coCartesian edges corre-
sponds to an “identity” of an object, because it forgets which object of Y
deserves to be called f(x).

Remark VII.3.0.3. In fact, given e and the map h : x0 → y2, this filler
is unique; but this is because we are working with categories; but we will
ignore this fact.

Definition VII.3.0.4. Given any functor3 p : C → ∆1, and an edge
e over ∆1, the edge e is called a p-coCartesian edge over ∆1 when the
fillers (VII.3.1) always exist.

The fact that I want to suggest (and it’s true) is the following: If p :
C→ ∆1 is a functor, and if

(C1) every object of X = p−1(0) is the domain of some p-coCartesian
edge,

then p is equivalent to a Grothendieck construction of some functor X →
Y = p−1(1). For brevity, we will say that a functor p : C→ ∆1 is a coCarte-
sian fibration if p has enough coCartesian edges. We have the following:

Theorem VII.3.0.5 (Imprecise). There is an equivalence between (i)
coCartesian fibrations over ∆1 and maps between them that respect co-
Cartesian edges; and (ii) Functors ∆1 → Cat and natural transformations
between them.

VII.4. coCartesian fibrations (for categories)

So, how do we think about the case of general B, and not just B = ∆1?
In other words, when does a functor p : C → B look like it arises from a
Grothendieck construction?

The very least you’d expect of p : C → B to encode a functor B → Cat
is that every edge of B encodes a functor – so that for every edge of B,
the restriction of p to that edge admits enough p-coCartesian edges. It is
common to call such a p a “locally4 coCartesian” fibration. And any edge of
C that is coCartesian when restricted to an edge of B will be called a locally
p-coCartesian edge.

To see what else is necessary, let’s consider the case B = ∆2 for con-
creteness. Suppose that you’ve chosen an object x ∈ p−1(0). If p is a locally
coCartesian fibration, there’s some locally p-coCartesian edge e01, above the
edge ∆{0,1} ⊂ B from 0 to 1, that “realizes” the codomain y1 of e01 as the
image of x under some functor f01. Likewise, there is a locally p-coCartesian
edge e12 for which p(e12) = ∆{1,2} ⊂ B realizing some object z2 as the image
f12(y1) for some functor f12.

3This is a definition for when Cf and B are both categories, not ∞-categories.
4The “locally” here refers to the fact that the condition only refers to a single edge.

When we want to define a coCartesian fibration over an arbitrary B, with potentially
many edges, we will check this condition “locally” over every edge of B.
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Then the very least we would want of p is that the composition e12 ◦ e01
be a locally p-coCartesian edge. Informally, we would want the composite
edge to realize z2 as the image of the composite functor f12 ◦ f01.

It turns out that this “very least” requirement is enough to guarantee
that p encodes a functor B → Cat. We codify it in the following definition.

Definition VII.4.0.1. Let p : C → B be a functor (between ordinary
categories). We say that p is a coCartesian fibration if the following holds:

(1) p is a locally coCartesian fibration. In other words, for every edge
∆1 → B, the restriction of p to ∆1 satisfies (C1).

(2) Locally coCartesian edges are closed under composition. In other
words, if e and e′ are locally p-coCartesian, and can be composed,
then the composition e′ ◦ e is also locally p-coCartesian.

Remark VII.4.0.2. We have chosen – in these notes – to define a co-
Cartesian fibration as an outcome of two checks: (i) That locally (i.e., edge-
by-edge in the base) the fibration looks like it arises from a functor, and (ii)
checking that this local property is closed under composition.

There is another way to characterize a coCartesian fibration using a more
“global” (in B) notion of coCartesian edge. Informally, we call an edge e
p-coCartesian if for any simplex ∆n → B for which p(e) is the intial edge
from 0 to 1, a partial lift of ∆n to C along Λn

0 can be extended to a full lift
of ∆n. Then we say p is a coCartesian fibration if every object x of C and
every edge in B out of p(x) admits a p-coCartesian edge lift.

The equivalence of our “local-to-global” definition and the latter defini-
tion is Proposition 2.4.2.8 of Higher Topos Theory. (There, the equivalence
is proven in the ∞-categorical setting as well.)

Remark VII.4.0.3. A coCartesian fibration between categories is also
called a Grothendieck op-fibration.

There is a notion of a Grothendieck fibration of categories which encodes
a functor Bop to the category of categories; for historial reasons, those p that
encode covariant functors from B are called op-fibrations in the literature.
The notion of coCartesian fibration is a term that is also used in the ∞-
categorical setting – coCartesian fibrations p : C→ B encode functors from
an ∞-category B to the ∞-category of ∞-categories.

As advertised, the Grothendieck construction – which turns a functor
B → Cat into a coCartesian fibration – is an equivalence. The articulation
of this equivalence requires some 2-categorical language, but we are going
to sweep that under the rug for the sake of exposition. (The 2-categorical
structure, homotopically speaking, is quite natural – the 2-morphisms are
only needed to express some natural isomorphisms, which one should think
of as natural homotopy data. Indeed, the data simply helps us keep track
of the fact that p-coCartesian edges are not unique, but are unique up to
natural isomorphisms of objects.) Here is one articulation of the equivalence;
it generalizes Theorem VII.3.0.5 to the setting where B is not a single edge.
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Theorem VII.4.0.4 (Imprecise). There is an equivalence between (i)
coCartesian fibrations over B and maps between them that respect coCarte-
sian edges; and (ii) Functors B → Cat and natural transformations between
them.

Remark VII.4.0.5. The equivalence above, of course, tells us that we
can think of a family of categories as a functor B → Cat, or as a coCarte-
sian fibration over B. It turns out that the latter way of thinking is often
more convenient, just because there are more constructions one can do with
fibrations than with functors.

Indeed, Grothendieck invented Grothendieck fibrations (which are Carte-
sian, not coCartesian) to be able to think more clearly about stacks. It be
came too unwiedly to think about a scheme or a stack as a functor from the
site of affine schemes into sets or categories, especially when writing down
what it means for a stack to be a sheaf of categories. Hence many of your
friends in algebraic geometry – especially those who have thought about
stacks – will be familiar with the notion of a Grothendieck fibration.

VII.5. An example, and adjunction as a property

A classic example is to consider the category M̃od whose objects are
pairs (R,M) with R a commutative ring and M a module. A morphism
(R,M) → (R′,M ′) in this category can be thought of in two equivalent
ways:

(i) A map of rings f : R→ R′, together with a map of R′-modules R′ ⊗R

M →M ′, or
(ii) A map of rings f : R → R′, together with a map of R-modules M →

f∗M ′, where f∗M ′ is my notation for the group M ′, thought of as an
R-module via f .

That these two ways are equivalent is the statement that there is a free-
forget adjunction, where R′⊗R− is the “free R′-module” functor, and f∗M
is the “forget” functor.

Of course, there is the functor

M̃od

p

��
Rings

(R,M)
_

��
R

.

It is an exercise to check that p is a coCartesian fibration; it classifies the
covariant functor taking a ring to its category of modules, and sending f :
R→ R′ to R′⊗R− : RMod→ R′Mod. It turns out that p is also a Cartesian
fibration, classifying the functor

Ringsop → Cat, R 7→ RMod, f 7→ f∗.
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That p is both Cartesian and coCartesian encodes that f∗ and R′ ⊗R −
are adjoints to each other. So already we see that adjunctions (which typi-
cally require data of natural transformations between two functors) can be
encoded in a single property (of whether a map is both coCartesian and
Cartesian).

Remark VII.5.0.1. This is incredibly useful. In many homotopical sit-
uations, you can imagine that it would be a pain in the but to not just have
a natural transformation to exhibit a “homotopy adjunction,” but to be re-
quired to provide all kinds of higher homotopies to exhibit the naturality of
the adjunction.

The general theme – as illustrated by the example of adjunctions – is that
we can trade “structuring data” (such as natural transformations exhibiting
an adjunction) with a “property to check” (such as whether a fibration is
both coCartesian and Cartesian). Such an exchange is really useful.

VII.6. Generalizing coCartesian fibrations to the setting of
∞-categories

From last time, you probably remember that to turn categorical ideas
into∞-categorical ideas, one must account for higher simplices. Here’s what
that looks like. Instead of a single object y2 that we want to map to, now
take y2, . . . , yk in the fiber above 1, and we suppose we have the following
diagram (which I draw in the case k = 2):

(VII.6.1) x0
e //

!! ((

x1

!!��
y1 // y2

You should visualize this as a tetrahedron with every face filled in except for
the face spanned by X1, Y1, Y2 (and without an interior of the tetrahedron).
Can you fill in this tetrahedron, and in particular, exhibit that the composite
map X1 → Y1 → Y2 is equal to the map X1 → Y2?

When C is a category, the answer is a resounding yes. But when C is not
a category, and rather an ∞-category, many such inner horns Λ3

0 may not
be fillable. (The collection of homotopies encoded in a map from Λ3

0 may
not form, say, a contractible loop in the space of maps.)

Because we cannot keep drawing higher-dimensional simplices on paper,
let us convert the filling diagram (VII.3.1) into a filling diagram one category
level up; i.e., into a diagram of simplicial sets, rather than a diagram inside
C. Then, that a filler (VII.3.1) exists in C is equivalent to asserting a filling
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simplex as below exists int he category of simplicial sets:

(VII.6.2) ∆{0,1}

""

e

**Λ2
0

e,h //

��

C

��
∆2 s1 //

∃

88

∆1.

Remark VII.6.0.1. Let’s first parse the solid arrows in the above dia-
gram (VII.6.2).

• The arrow labeled e picks out the edge in C that we want to demon-
strate is “universal;” i.e., locally p-coCartesian.
• The arrow labeled e, h picks out a horn-shapred diagram in C, and
it is exactly the (solid) diagram from (VII.3.1).
• The vertical arrows are the obvious ones: The righthand arrow is
the projection p : C→ ∆1 that we want to demonstrate as “arising
from a Grothendieck constructoin,” and the lefthand vertical arrow
is the inclusion of the horn into the 2-simplex.
• The bottom horizontal arrow is to make sure that the horn Λ2

0 lies
over the correct edge. After all, there are many maps from ∆2 to
∆1, and we specifically choose s1 so that the arrows (0 → 1) and
(0→ 2) of ∆2 both traverse the edge ∆1.

As a consequence, the bottom horizontal arrow ensures that
e (and hence h) lives over the non-trivial edge of ∆1. The dia-
gram (VII.6.2), and especially the bottom horizontal arrow, will
seem even less redundant when we replace ∆1 by an arbitrary base
B.

As motivated by the discussion before (VII.6.2), the n = 2 case of Λn
0 is

all we need to check when C is a category. But when C is an ∞-category,
e may not be sufficiently universal even after filling 2-horns – after all, the
3-horn depicted in (VII.6.1) may not admit a filler. And if such a 3-horn
filler does not exist, we would conclude that the 2-horn fillings produced
by e are not canonical (as the 2-horn fillings yield non-homotopic ways to
factor the x0 → yi edges through e).

Here, then, is the generalization of Definition VII.3.0.4 to the setting of
an ∞-category C mapipng to ∆1:

Definition VII.6.0.2. Let C be an ∞-category. Given any functor p :
C → ∆1, and an edge e over ∆1, we say e is a p-coCartesian edge over ∆1
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when if for every solid diagram as below, a dashed filler always exist.

(VII.6.3) ∆{0,1}

##

e

**Λn
0

//

��

C

p
��

∆n
s1◦...◦s1

//

∃
77

∆1.

Remark VII.6.0.3. As before, if e is a p-coCartesian edge above ∆1, it
means that any map from x ∈ p−1(0) to y ∈ p−1(1) – and in fact, from x
to any homotopy coherent diagram of yi in p−1(1) – will factor through e,
canonically up to homotopy.

Informally, this means any diagram emanating from x factors canonically
through the edge e.

Definition VII.6.0.4. More generally, for an arbitrary ∞-category C,
let p : C→ B be a functor where B is (the nerve of) an ordinary5 category.
We say that an edge e in C is a locally p-coCartesian edge if, after restricting

p to the edge ∆1 p(e)−−→ B, e is a p-coCartesian edge over ∆1.

VII.7. coCartesian fibrations

As before, we would expect a map p : C → B to encode a functor if
(i) we have enough locally p-coCartesian edges, and (ii) such edges (which
encode images of functors) compose (to encode the image of a composition
of functors). We codify this as follows:

Definition VII.7.0.1 (coCartesian fibration over a category). Let p :
C → B be a functor of ∞-categories, where B = N(B) is the nerve of a
(ordinary) category6. We say that p is a coCartesian fibration if the following
properties are satisfied:

(1) p is a locally coCartesian fibration. In other words, for every edge
∆1 → B, the restriction of p to ∆1 has enough coCartesian edges
over ∆1 (Definition VII.6.0.2).

(2) Locally coCartesian edges are closed under composition. In other
words, if e and e′ are locally p-coCartesian, and a : ∆2 → C is
any 2-simplex with d2a = e, d0a = e′, then d1a is also locally p-
coCartesian.

5When B is not an ordinary category, one must impose another condition on p – that
it be an inner fibration. We will not discuss this point, but let me just say that any functor
C → B is an inner fibration if B is (the nerve of) an ordinary category.

6Again, when B is not an ordinary category, one simply adds on the restriction that
p be an inner fibration
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Remark VII.7.0.2. This is exactly the generalization of the notion of a
coCartesian fibration (when C is the nerve of a usual category) to the setting
of ∞-categories. There is also a notion of coCartesian fibration when B is
an ∞-category (that does not arise as the nerve of an ordinary category);
we will leave this for Section VII.10, as we will not need it today.

The big result that we will be using today is:

Theorem VII.7.0.3 (Vague.). A coCartesian fibration overB is the same
thing as a functor B→ Cat∞.

Really, Lurie exhibits an equivalence between two model categories; the
result is that the “same thing as” is meant to be interpreted as there is a
unique, and natural, up to contractible choice, way to convert between the
two kinds of data. For a detailed statement, you can see Theorem 3.2.0.1 of
Higher Topos Theory.

VII.8. What is a symmetric monoidal ∞-category? Part II.

We have now seen that a functor from BLAH into Cat∞ is the same
thing as a coCartesian fibration over BLAH. So here is another attempt at
defining what a symmetric monoidal ∞-category is, by taking the obvious
coCartesian analogue of Definition VII.1.2.1.

Definition VII.8.0.1 (Another first attempt). A symmetric monoidal
∞-category is a coCartesian fibration

C⊗ → Fin

from some ∞-category C⊗ to Fin, such that the fiber CI over an object I is
identified with the product (C1)

I .

This would be an okay definition, too; but I am going to make a minor
qualm: Do we really want an equality Z(I) = Z(1)I to be built in to our
definition? In our first first attempt, such an equality seems natural, but
also rather strict. What if, in some situations, it is more natural to have
a category that is identified with Z(1)I up to equivalence, and not via an
equality? (See Remark VII.8.2.10.)

It would be quite satisfying if something like this could be phrased not
as such an identification (which is more data), but as a property. It turns
out that the combinatorics of adjoining a basepoint to our finite sets allows
us to do this.

VII.8.1. Finite pointed sets. We follow the notation of Chapter 2
of Higher Algebra. This is to make your reading easier in case you want to
cross-reference these writings with Lurie’s.

Notation VII.8.1.1 (Fin∗). We let

Fin∗

denote the category of finite pointed sets.
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An object of Fin∗ is a finite set I, equipped with a chosen basepoint ∗
(which one might think of as a choice of function from 1→ I). A morphism
I → J is a function that sends the basepoint to the basepoint (which one
might think of as a function compatible with the functions from 1).

Notation VII.8.1.2. We let ⟨n⟩ := n
∐
∗. That is,

⟨n⟩ = {1, . . . , n, ∗}
is a set with n+ 1 elements, with one of them ∗ designated as a basepoint.
Note

⟨0⟩ = {∗}
is a 1-element set.

Every object of Fin∗ is (non-canonically) isomorphic to an object of the
form ⟨n⟩. So we will only consider the objects ⟨n⟩ for most discussions.

Example VII.8.1.3. There is a “trivial” map

⟨n⟩ → ⟨0⟩.

Example VII.8.1.4 (Active maps). In the opposite extreme, any func-
tion n→ m of finite sets induces a function

⟨n⟩ → ⟨m⟩
by sending the basepoint to the basepoint. We call such maps active maps.

You should think of active maps as encoding all the structures Fin
wanted to encode – e.g., multiplication, commutativity, associativity. There
is another class of maps that we now identify – inert maps – that you should
think of as purely formal maps that allow us to more naturally articulate
the direct-product Assumption VII.1.1.3.

Definition VII.8.1.5. A function of finite pointed sets f : ⟨n⟩ → ⟨m⟩ is
called inert if, for every i ∈ m = ⟨m⟩ \ {∗}, the preimage f−1(i) has exactly
one element.

Remark VII.8.1.6. You should think of an inert map as exactly the
data of an injection m→ n.

Example VII.8.1.7. For every n, there are exactly n inert maps

ρi : ⟨n⟩ → ⟨1⟩, 1 ≤ i ≤ n

satisfying the property that ρi(i) = 1.

Example VII.8.1.8. The only inert map from ⟨0⟩ is id⟨0⟩. Every map
to ⟨0⟩ is inert.

Remark VII.8.1.9. I think that – in topology, at least – the category
of finite pointed sets first gained attention through work of Segal. I may
be wrong. (In Segal’s language, the category of finite pointed sets was
encoded in its opposite category, which Segal called Γ.) Segal used the
combinatorics of this category to organize connective spectra. There is a very
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nice MathOverflow question7 by Qiaochu Yuan, with equally nice answers,
on this category.

VII.8.2. The definition of symmetric monoidal∞-category. We
will now try to fix the complaints I had about our attempted Defintion VII.8.0.1.
In doing so, we arrive at Lurie’s definition.

Notation VII.8.2.1 (C⊗
⟨n⟩). Fix an ∞-category C⊗ and a coCartesian

fibration C⊗ → Fin∗. We let
C⊗
⟨n⟩

denote the fiber above the object ⟨n⟩. More precisely, it is the simplicial
subset of C⊗ consisting of those k-simplices that are sent to the degenerate
k-simplex at ⟨n⟩.

Definition VII.8.2.2. A symmetric monoidal ∞-category is the data of
an ∞-category C⊗ and a coCartesian fibration

C⊗ → Fin∗

satsifying the following condition:

• For each n ≥ 0, the induced functor

(VII.8.1) C⊗
⟨n⟩ →

∏
n

C⊗
⟨1⟩

is an equivalence of∞-categories. That is, the coCartesian fibration
exhibits the fiber above ⟨n⟩ as a direct product of the fiber above
⟨1⟩.

Remark VII.8.2.3. Let’s explain the “induced functor” appearing in (VII.8.1).
The ability to write down this induced functor is the exact motivation for
considering Fin∗ instead of Fin.

Fixing n, recall the inert maps ρi from Example VII.8.1.7. By the
equivalence between coCartesian fibrations and functors to Cat∞ (Theo-
rem VII.7.0.3), we know that each ρi defines a functor

C⊗
⟨n⟩ → C⊗

⟨1⟩.

In other words, by the universal property of products (as a limit of ∞-
categories), these n maps define a single map

C⊗
⟨n⟩ →

∏
n

C⊗
⟨1⟩.

Example VII.8.2.4. A sneaky case is when n = 0. Then there are no
maps ρi, and the “induced map” is a map

C⊗
⟨0⟩ →

∏
∅

C⊗
⟨1⟩ ≃ ∗.

7“Where does Segal’s category come from?” https://mathoverflow.net/
questions/144328/where-does-segals-category-come-from

https://mathoverflow.net/questions/144328/where-does-segals-category-come-from
https://mathoverflow.net/questions/144328/where-does-segals-category-come-from
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(The empty direct product is a terminal object; in the ∞-category of ∞-
categories, a terminal object is given by the (nerve of) the category with
one object and only the identity morphism: ∆0, here written as ∗.) Thus,
Definition VII.8.2.2 demands that C⊗

⟨0⟩ is equivalent to ∆0 as an∞-category.

Remark VII.8.2.5. Having the map (VII.8.1) is the main reason for the
passage from Fin to Fin∗. As a consequence of being able to think about
Cn everywhere, almost every definition involving symmetric monoidal ∞-
categories (and, more generally,∞-operads) will involve not only respecting
the map to Fin∗, but respecting coCartesian edges that lie above the inert
morphisms.

Notation VII.8.2.6. Fix a symmetric monoidal∞-category C⊗ → Fin∗.
We will denote the fiber C⊗

⟨1⟩ by C, and call it the underlying ∞-category.

Notation VII.8.2.7. Let C⊗ → Fin∗ be a symmetric monoidal ∞-
category. Consider the map

⟨2⟩ → ⟨1⟩
given by 1, 2, 7→ 1. By the coCartesian fibration assumption, there is an
associated functor

C⊗
⟨2⟩ → C⊗

⟨1⟩ =: C.

By the product-preserving assumption of (VII.8.1), we have an equivalence

C× C C⊗
⟨2⟩

oo // C⊗
⟨1⟩ =: C.

And a choice of inverse (and homotopical data rendering the inverse an
inverse) is unique up to contractible choice. Thus, we have a map

(VII.8.2) ⊗ : C× C→ C

by composing the arrows in the above diagram.

Notation VII.8.2.8. Fix a symmetric monoidal∞-category C⊗ → Fin∗.
We will abuse notation and say that C⊗ is a symmetric monoidal∞-category,
suppressing the coCartesian fibration from the notation.

Remark VII.8.2.9. In traditional category theory, one would simply say
“Let C be a symmetric monoidal category.” In ∞-category literature, it is
now common to say “Let C⊗ be a symmetric monoidal ∞-category.” One
advantage of this notation is that it also sets the notation for the symmetric
monoidal structure.

Remark VII.8.2.10 (Really?). You would be justified in being deeply
troubled by the definition of the “monoidal structure” ⊗ in (VII.8.2). It is
not very healthy to think of a symmetric monoidal structure in such terms.
In practice, one of two things happen:

(I) Your symmetric monoidal ∞-category arises from an incredibly con-
crete model, so the maps (VII.8.1) may even be isomorphisms of simplicial
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sets. This is the case, for example, if one takes a usual symmetric monoidal
category, re-writes it as a multicategory8, then takes the nerve.

(II) You want to formally conclude the existence of a symmetric monoidal
structure on an ∞-category – which means you must take C and construct
C⊗ → Fin∗. All formal processes boil down to checking the existence of
horn-fillers of some sort (due to the definition of coCartesian fibration, for
example), and you want techniques to do this. The techniques run into a
wall if you demand isomorphisms of simplicial sets, and do not allow for the
flexibility provided by “just check a property of the map (VII.8.1).”

As an example, a formal process that arises a lot is localization. Even in
the classical setting, I would invite you to try to take a symmetric monoidal
category C, and write down an equivalence (C×C)[(W ×W )−1]→ C[W−1]×
C[W−1]. The natural diagrams will involve coherences between zig-zags of
squares (or squares of zig-zags). Once certain equivalence relations must be
invoked, you realize that the natural structure to carry around is not that
of isomorphism, but to allow for homotopical data to encode equivalences.
Without modding out by equivalence relations, isomorphisms of categories
are out the window.

VII.9. Some pay-offs

Phew. Wasn’t that a journey? It would have been very fast to just
give you the definition, but I really did want to motivate Fin∗, because this
category can be the most confusing part of the definition.

If someone drags you along a mathematical journey and the endpoint
is a definition – but not a theorem – you can rightly ask what it was all
for. Let’s illustrate a nice consequence: The one big definition makes other
definitions easier.

VII.9.1. Commutative algebras. Fix a symmetric monoidal∞-category
C⊗.

Definition VII.9.1.1. A commutative algebra in C⊗ is a section

C⊗

p

��
Fin∗

UU

that sends inert edges to p-coCartesian edges. Put another way, a commu-
tative algebra is a horizontal arrow

Fin∗

id ""

// C⊗

p}}
Fin∗

8I apologize for not covering the topic of multicategories; it is a useful language for
some users of this stuff.



D
ra
ft

VII.9. SOME PAY-OFFS 247

making the diagram of simplicial sets commute, taking inert morphisms in
Fin∗ to p-coCartesian edges in C⊗.

Given such a map, we let the image of ⟨1⟩ by A, and we will often call
A ∈ C the commutative algebra.

Definition VII.9.1.2. A map of commutative algebras A → B is a
functor

Fin∗ ×∆1 → C⊗

respecting the projections to Fin∗, and where the restrictions to Fin∗×∆{0}

and Fin∗ ×∆{1} give rise to A and B, respectively.

Remark VII.9.1.3. Indeed, we can define the ∞-category of commu-
tative algebras in C⊗ now. It is the simplicial set whose k-simplices are
maps

Fin∗ ×∆k → C⊗

respecting projections to Fin∗, and sending inert edges of each Fin∗ ×∆{i}

to coCartesian edges.

VII.9.2. Symmetric monoidal and lax symmetric monoidal func-
tors.

Definition VII.9.2.1. Let C⊗ andD⊗ be symmetric monoidal∞-categories.
A symmetric monoidal functor from C⊗ to D⊗ is a horizontal arrow

C⊗

p ""

// D⊗

q||
Fin∗

taking p-coCartesian edges to q-coCartesian edges, and making the indicated
triangle of simplicial sets commute.

The definition of algebra and of symmetric monoidal functor differ only
in which coCartesian edges are respected. Indeed, relaxing the symmetric
monoidal functor condition, we arrive at the following:

Definition VII.9.2.2. Let C⊗ andD⊗ be symmetric monoidal∞-categories.
A lax symmetric monoidal functor from C⊗ to D⊗ is a horizontal arrow

C⊗

p ""

// D⊗

q||
Fin∗

taking p-coCartesian edges of inert morphisms to q-coCartesian edges (of
inert morphisms), and making the indicated triangle of simplicial sets com-
mute.



D
ra
ft

248VII. FIBRATIONS OF ∞-CATEGORIES AND SYMMETRIC MONOIDAL ∞-CATEGORIES

VII.10. (Not covered in spoken lecture) coCartesian fibrations
(over ∞-categories)

Definition VII.10.0.1 (coCartesian fibration over an ∞-category). Let
p : C → B be a functor of ∞-categories.9 We say that p is a coCartesian
fibration if the following properties are satisfied:

(a) For every edge f : b→ b′ in B, and every object x with p(x) = b, there
exists a p-coCartesian edge e for which p(e) = f and d1e = x.

(b) For every n ≥ 2 and 0 < k < n, and for every solid diagram as below, a
dashed lift exists:

(VII.10.1) Λn
k

//

��

C

p

��
∆n

>>

// B

(The term for this is that p is an “inner fibration.”)

Remark VII.10.0.2. The concept of an inner fibration has no classical
category theory analogue that’s easy to state. But let me just note two
things about inner fibrations. First, if p : C → B is an inner fibration,
consider the solid diagrams in (VII.10.1) for which the map ∆n → B is
constant. Then the fibers of p are all ∞-categories.

Second, it turns out that if p is an inner fibration, then for every a : ∆1 →
B, you can interpret p−1(a) as encoding a bimodule10 between its two fiber
∞-categories; that is, something like a functor p−1(0)op × p−1(1)→ Spaces.

Thus, if you are already familiar with the idea that some bimodules are
special and deserve to be called graphs, or functors, you can imagine that
the “coCartesian edges exist” condition to be the condition that ensures p
does not encode some complicated system of bimodules, but just an honest
functor B→ Cat∞.

9Note Suppose B is an arbitrary ∞-category.
10Otherwise known as a correspondence.
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VII.11. Adjunctions

Let B be a category and suppose you have a functor f : Bop → Cat in
the category of categories. (Note the contravariance.)

(a) Construct a category Cf and a functor

Cf

p

��
B

for which p is a Cartesian fibration.

Remark VII.11.0.1. This means that for every edge q : b0 → b1
in B, and every object b̃0 ∈ Cf with p(b̃0) = b0, there exists an edge e

with domain b̃0 and with p(e) = q, for which the following horn-filler
can always be found:

∆{n−1,n}

$$

e

))
Λn
n

//

��

N(Cf )

��
∆n //

∃
<<

N(B).

(That is, we can get the dashed arrow whenever we are given the solid
arrows.)

(b) Suppose you have a category C and a functor p : C→ ∆1 which is both
a Cartesian and coCartesian fibration. Convince yourself that p encodes
an adjunction going between two categories p−1(0) and p−1(1).

(c) Now suppose you have an ∞-category equipped with a functor p : C→
∆1 which is both a Cartesian and coCartesian fibration. Convince your-
self that p seems to encode what one might mean by a homotopical
version of an adjunction.
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VII.12. Automatic inner fibrations

Let p : C → B be a functor, and suppose that B is the nerve of an
ordinary category. Then show that p is automatically an inner fibration –
see (VII.10.1).

VII.13. Being locally coCartesian is not coCartesian

Find an example of a functor between ordinary categories p : C → ∆2

such that p is locally coCartesian (meaning the restriction of p to any edge
of ∆2 is coCartesian) but for which p itself is not coCartesian. (Hint: What
would be associated to a composition of two functors, equipped with a nat-
ural transformation to a third functor?)

VII.14. Associativity and commutativity

Fix an ∞-category C. Write out the diagrams in C that emerge from a
functor Fin→ C, under Assumption VII.1.1.3, and for the diagrams involv-
ing only the objects 3, 2, 1.

VII.15. Stratified tangent bundle structures

In his talks, Mohammed talked about a homotopical way to think about
the manifolds obtained from compactifying moduli spaces in Floer theory.

Here’s one framework for it. At every step of this exercise is: Make sure
you understand each statement.

(a) Note that there are natural inclusions of spaces BO(0) → BO(1) →
BO(2) → BO(3) → . . ., essentially by direct sum – a k-plane in R∞

defines a (k + 1)-plane in R∞+1 ∼= R∞. This defines a coCartesian
fibration

B̃O → Z≥0.

where the fiber above k is the Kan complex modeling BO(k). Here,
Zgeq0 is the poset of non-negative integers, considered as an∞-category
by taking its nerve.

(b) Fix a topological manifold with corners – more precisely, a space X
equipped with a stratification X → Z≥0, which means a continuous
map where the codomain is given the Alexandroff topology of the poset.
We demand that X have the property that it have local Euclidean charts
exhibiting a topological-manifold-with-corners structure respecting this
stratification.

(c) Moreover, given such a data, there is a notion of exit path ∞-category
of X, which I will denote by Exit(X). This is a simplicial set sitting
inside the Kan complex Sing(X), and there exists a natural functor
Exit(X) → Z≥0. (Such a functor respecting stratification would not
exist from Sing(X).)
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(d) If we know that each stratum of X is smooth a priori (this is the case
in Floer theory) then each stratum Xi

11 comes equipped with a map
Xi → BO(i) classifying the tangent bundle.

(e) One could imagine, then, the choice of a map T

Exit(X)
T //

$$

B̃O

}}
Z≥0

could be a homotopy-theoretic stand-in that is (far weaker than, but
gives intution for) a smooth structure on X itself.

11This is the fiber above i ∈ Z≥0, otherwise known as the dimension i part of X
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Exercises on symmetric monoidal ∞-categories

VII.16. Fin∗

Consider the identity functor Fin∗ → Fin∗. Does this exhibit Fin∗ as a
symmetric monoidal ∞-category? If so, what name do you want to give it?

VII.17. Operads

If you get confused by this exercise, or need some prerequisites, read the
introduction to Chapter 2 of Higher Algebra.

(a) Given a symmetric monoidal category C in the usual sense, write out C as
a multicategory in the usual way. (This assumes some prior knowledge.)

(b) Show that the nerve of C admits a natural map to Fin∗.
(c) Convince yourself that any symmetric monoidal category gives rise to

an symmetric monoidal ∞-category via the above construction.
(d) Consider a symmetric monoidal functor C → D. Can you write down

the associated map of symmetric monoidal∞-categories? How does this
map play with the coCartesian edges?

VII.18. Let’s reLax

Let C⊗,D⊗ be symmetric monoidal∞-category. A lax symmetric monoidal
functor f will induce, for every X,Y ∈ C, an arrow between f(X ⊗ Y ) and
f(X)⊗ f(Y ). In which direction does the arrow go?

VII.19. Commutative algebras

(a) Play around with Definition VII.9.1.1. Convince yourself that the defi-
nition indeed captures (for you) the intuition of a commutative algebra
that is commutative up to homotopy.

(b) What happens if you demand that the map Fin∗ → C⊗ send all edges
(not just the inert edges) to coCartesian morphisms?

(c) Straight from the definitions, show that a symmetric monoidal functor
f : C⊗ → D⊗ preserves commutative algebras. (That is, for any com-
mutative algebra A in C⊗, f(A) is naturally a commutative algebra in
D⊗.)

(d) Straight from the definitions, show that a lax symmetric monoidal func-
tor C⊗ → D⊗ preserves commutative algebras.

253
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(e) In the definition of maps of commutative algebras (Definition VII.9.1.2),
what happens if you demand that for all n ≥ 0, the edges of the form
id⟨n⟩×∆1 are all coCartesian?

(f) More generally, given an ∞-operad O, an O-algebra in C⊗ is the data of
a functor O→ C⊗ that respects the projection to Fin∗, and preserves the
inert coCartesian edges. Show that a lax symmetric monoidal functor
preserves O-algebras.

VII.20. E∞

Consider the topologically enriched multicategory associated to the op-
erad E∞. By taking its homotopy coherent nerve, exhibit a functor to Fin∗.
Show that this is an equivalence of ∞-categories.

In particular, show that an E∞-algebra in a symmetric monoidal ∞-
category is the same thing as a commutative algebra. More precisely, exhibit
an equivalence of ∞-categories between these two kinds of algebras.
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LECTURE VIII

(Bonus lecture) ∞-operads

We didn’t have time in our seven lectures to talk about ∞-operads. So
I’ll include this as a bonus chapter in the notes.

Why didn’t we have time? Well, we went nice and slow so that the
central ideas of our lectures came through, and so that everything was mo-
tivated coherently. And to do justice to ∞-operads, we have to introduce
one more classical idea: The theory of colored operads, also known as multi-
categories. (These are synonyms.)

Remark VIII.0.0.1. It may be helpful to think of the following analogy:
Just as an algebra is a category with one object, an operad is a multicategory
(or colored operad) with one color.

VIII.1. Colored operads, a.k.a. multicategories

Operads are good for encoding algebraic structures with one output.
(So, for example, a single operad could not encode bialgebras, which have
both algebra and coalgebra – two output – structures.) But even one-output
operations can have interesting additional data we want to contemplate. The
most common example of this is the theory of modules: It’s one thing to give
an algebra A, but is there an operad-like structure whose algebras encode
both algebras and modules over them?

Example VIII.1.0.1. This desire to encode modules becomes even more
interesting when we recognize that different kinds of algebras can have dif-
ferent kinds of modules.

(a) Consider for a moment the open upper-half-plane {(x1, . . . , xn), xn > 0}.
Consider further an assignment which, to every open disk in Rn that
intersects the upper-half-plane and does not intersect the origin, a copy
of a chain complex A, while to any such open disk that intersects the
origin, one assigns another chain complex M . Then the pair (A,M)
would represent a module M with an action from an En-algebra A.

(b) Or, one could imagine that A lives on all of Rn (not just the upper-
half-plane) and consider a structure that assigns M to any open disk
containing the origin. Then the pair (A,M) encodes a module M over
A, but there is a sphere’s worth of compatible module actions on M
(the sphere being the copy of Sn−1 ⊂ Rn about the origin). This is a
different kind of module action than that of the previous paragraph.
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(c) Yet another variant is to assign M to any disk whose center is contained
in the hyperplane xn = 0. Then (A,M) is a pair which also assigns to
M an En−1-algebra structure (on top of a module action of A on M).

Pictures would be great here

As the example above shows, it is sometimes useful to have multiple
“kinds” of objects encoded. (In the above example, A represented one kind
of object – an En-algebra – and M another – a module of some flavor.)
And different kinds of objects may admit interesting geometric or algebraic
operations. This leads to the creation of the notion of a (symmetric) colored
operad, which some people refer to as a (symmetric) multicategory.

I will only give an informal definition here. A succinct definition is
given in Definition 2.1.1.1 of Lurie’s Higher Algebra. Another source is Tom
Leinster’s book1, though the perspective there is non-symmetric by default.

Definition VIII.1.0.2 (Informal). A (symmetric) multicategory O is the
data of

(1) A collection ObO which we call the set of colors, or the set of
objects.

(2) For every finite set I, every collection {Xi}i∈I of colors, and every
color Y , a set of multimorphisms

MulO({Xi}i∈I , Y ),

(3) Finally, for every function α : I → J , for every collection {Xi}i∈I ,
{Yj}j∈J , and for every choice of object Z, a composition map∏

j∈J
MulO({Xi}i∈α−1(j), Yj)

×MulO({Yj}j∈J , Z)→ MulO({Xi}i∈I , Z).

These data must satisfy various compatibilities with respect to composition
of finite-set functions I → J → K – in particular, one sees that automor-
phisms of a given set I acts on MulO({Xi}i∈I , Y ), and that the composition
map above is associative in an appropriate sense.

Finally, for a unital version, one requires distinguished elements in the
#I = 1 multimorphism sets MulO({X}, X) satisfying natural unit condi-
tions with respect to the composition maps.

Definition VIII.1.0.3. A map f : O→ P of multicategories is the data
of

• A function f : ObO→ ObP,
• For every finite set I, for every collection {Xi}i∈I in ObO, and for
every object Y ∈ ObO, a function

MulO({Xi}i∈I , Y )→ MulP({f(Xi)}i∈I , f(Y ))

1Tom Leinster, Higher Operads, Higher Categories, London Mathematical Society
Lecture Note Series 298, Cambridge University Press (2004), ISBN 0-521-53215-9. Also
available at arXiv:math/0305049.



D
ra
ft

VIII.1. COLORED OPERADS, A.K.A. MULTICATEGORIES 257

respecting the composition operations of O and P. (And, for f to be a unital
map, units must be respected.)

Example VIII.1.0.4 (Symmetric monoidal categories). Let C be a sym-
metric monoidal category. Then there is an associated multicategory whose
set of objects is the same as that of C, and where we define

Mul({Xi}i∈I , Y ) := homC(
⊗
i∈I

Xi, Y ).

Example VIII.1.0.5 (Categories). Let C be a category. Then there is
an associated multicategory whose set of objects is the same as that of C,
and where we define

Mul({Xi}i∈I , Y ) :=

{
homC(Xi, Y ) #I = 1

∅ #I ̸= 1.

Example VIII.1.0.6 (Operads). Let O be an operad. Then there is an
associated multicategory whose set of objects ObO = {∗} has exactly one
element – so we may associate the data of a collection {Xi}i∈I simply with
I itself – and where we declare

Mul(I, ∗) := O(#I).

Example VIII.1.0.7. Let C′ be the multicategory associated to a sym-
metric monoidal category C, and O′ the multicategory associated to an op-
erad O. Then a unital map of multicategories O′ → C′ is a choice of O-algebra
in C.

Remark VIII.1.0.8. There is an obvious notion of multi-category one
obtains after enriching; that is, given a symmetric monoidal category V⊗, one
can define a multi-category O enriched in V⊗ by declaring each MulO({Xi}i∈I , Y )
to be an object in V, and by replacing every direct product appearing in the
composition map by the symmetric monoidal product ⊗.

One common case of interest is to take V⊗ to be the category of spaces
with direct product, or the category of chain complexes with tensor product.

Remark VIII.1.0.9. The enriched versions of ∞-operads, however, are
a bit less obvious to set up. See the work of Gepner-Haugseng 2.

Example VIII.1.0.10. We will now construct a multicategory enriched
in spaces that classifies the algebraic data of an En-algebra acting “from
every direction” on a single module. This is Example VIII.1.0.1(b).

Let O be a multi-category with two objects/colors, which I will call
A and M. Then any collection of objects {Xi}i∈I may be rewritten as
{Xi′ = M}i∈I′ and {Xi′′ = A}i′′∈I′′ for I = I ′

∐
I ′′. I then declare

MulO({Xi}i∈I , Y )

to be as follows:

2
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• When the target color Y is equal to A,
– Empty when I ′ ̸= ∅
– The collection of rectilinear embeddings of

∐
I′′ [0, 1]

n into [0, 1]n.
• When the target color Y is equal to M,

– The collection of rectilinear embeddings j of
∐

I [0, 1]
n into

[0, 1]n for which
(i) i ∈ I ′ implies that j takes the center of the ith cube to

the center of the codomain. (In particular, the multi-
morphism space is empty if #I ′ ≥ 2.)

(ii) i ∈ I ′′ implies that the image of j restricted to the ith
cube is disjoint from the center of the codomain.

VIII.2. E pluribus unum

You probably looked at the definition of multicategory and thought:
“Why is this even necessary? Can I not just encode this in a single cate-
gory?”

For concreteness, fix a multicategory C. Then one could dream of a
category C⊗ whose set of objects is not ObC, but whose set of objects is the
collection of all pairs (I, {Xi}i∈I), and where

homC⊗({Xi}i∈I , {Y }) = MulC({Xi}i∈I , Y ).

Then, very quickly, one runs into the following question: What happens
when the codomain consists of a non-singleton collection – e.g., {Yj}j∈J for
#J ̸= 1? What should homs into such a thing be?

If we want to reproduce a multicategory C from our putative category
C⊗, we’d like to encode a way in which there is no new information in
such morphism spaces. Given that we are indexing our maps by functions
between finite sets anyway, here is a natural way to do so:

We declare that a morphism from {Xi}i∈I to {Yj}j∈J is a pair

(α : I → J , {fj}j∈J)
where α is a function, and fj is an element of the multimorphism space
determined by α and j:

fj ∈ MulC({Xi}i∈α−1(j), Yj).

Remark VIII.2.0.1. Pictorically, one might imagine that an arbitrary
map from {Xi}i∈I to {Yj}j∈J can be represented by a directed graph (and
not a directed tree) having I as input set and J as output set. The data
of α above instead allows us to visualize the map as draw-able in a very
specific kind of (possibly disconnected) directed graph: As a forest. That is,
for every j ∈ J , one draws a tree with j as a root, and with α−1(j) as the
set of leaves. The most faithful drawing for us – following Remark III.7.1.1
– would be to draw these trees as corollas.

What we arrive at is, then, is a natural way to encode a multicategory
C into a single category C⊗:
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Construction VIII.2.0.2. Given a multicategory C, the category asso-
ciated to C is notated C⊗, and defined as follows:

• The objects of C⊗ are pairs (I, I → ObC). (That is, a finite set I
together with a collection of colors {Xi}i∈I .
• A morphism from (I, I → ObC) to (J, J → ObC) is a pair

(α : I → J, {fj ∈ MulC({Xi}i∈α−1(j), Y )}j∈J
.

This associated category has a forgetful functor to Fin.
Now, the question is – can we characterize those functors C⊗ → Fin that

realizes C⊗ as equivalent to something arising from a multicategory? As
in the previous lecture, it will be very useful to consider not Fin but Fin∗.
Moreover, it’ll be useful to pick out the classes of morphisms in Fin∗ that
introduce “no new data” on our morphisms.

VIII.3. Inert maps

You already encountered inert maps in Definition VII.8.1.5. Let me
recall the definition here:

Definition VIII.3.0.1. Let I+ and J+ be two finite pointed sets. We
will say a map α : I+ → J+ is inert if for every j ∈ J , α−1(j) consists of
exactly one element.

Remark VIII.3.0.2. One can think of an inert map as defining an in-
jection from J to I. Alternatively, an inert map is a quotient map I+ → J+
obtained by identifying some elements of the domain with the base point.

Notation VIII.3.0.3. We let Fininert∗ ⊂ Fin∗ denote the subcategory
consisting of the same objects, but only of the inert morphisms.

In defining symmetric monoidal ∞-categories p : C⊗ → Fin∗, we picked
out some of the inert morphisms – namely, the morphisms ρi : I+ → ⟨1⟩ – to
be able to characterize the fibers CI+ as I-fold products of C⊗

⟨1⟩. Importantly,

we already assumed the map C⊗ → Fin∗ was a coCartesian fibration. But
not every multicategory arises from a symmetric monoidal category, so we
will relax this assumption so that p is only coCartesian when restricted to
the inert subcategory.

VIII.3.1. Characterizing the maps that arise from multicate-
gories.

Proposition VIII.3.1.1. Suppose C⊗ is a category equipped with a
functor p : C⊗ → Fin∗. Then C⊗ is the category associated to a multicate-
gory C with category of colors p−1(1) if and only if the following hold:

(a) The maps ρj : J+ → ⟨1⟩ (sending j to 1 and everything else to the base
point) admit enough coCartesian lifts. In particular, each ρj defines a
functor p−1(J+)→ ρ−1(⟨1⟩).
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(b) The induced functor

ρ−1(J+)→
∏
j∈J

C⊗
⟨1⟩

is an equivalence of categories. (That is, realizes ρ−1(J+) as the J-fold
product of C⊗

⟨1⟩. We think of C := C⊗
⟨1⟩ as the category of colors and

1-input operations of a multicategory.)
(c) For any morphism of finite sets α : I → J and any objects XI ∈ p−1(I+),

YJ ∈ p−1(J+), let homα
C⊗(XI , JY ) denote the collection of moprhisms

from XI to YJ that map to α in Fin∗. Then the map

homC⊗(XI , YJ)→
∏
j∈J

homC(Xα−1(j), Yj)

is a bijection.

What the proposition tells us is that we can indeed encode the data
of a multicategory (i.e., colored operad) as the data of a single category,
equipped with a map to Fin∗, satisfying some properties.

VIII.4. Definition of ∞-operad

VIII.5. Trees versus finite sets
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Exercises

VIII.6. Multicategories and algebras over operads

Verify Example VIII.1.0.7.

VIII.7. En acting on Ek

For each example in Example VIII.1.0.1, construct a multicategory for
which maps out of the multicategory classify algebras and modules of the
given flavor.

(We tackled one such multicategory in Example VIII.1.0.10.)
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