Writing Assignment 2

Due Monday, February 1, 11:59 PM

This is among the "mathiest" writing assignments.

Background

We saw in class that, as h approaches zero, the expression $\sin (h) / h$ approaches 1 .

You may use this fact in this assignment. You may, in fact, assume ${ }^{4}$ the following fact as well:

$$
\lim _{h \rightarrow 0} \frac{\cos (h)-1}{h}=0
$$

Finally, you may also use the following useful fact from trigonometry. It is the angle addition formula for sine:

$$
\sin (a+b)=\sin (a) \cos (b)+\sin (b) \cos (a) .
$$

The prompt

Using these facts, I want you to explain to me why $\sin ^{\prime}=\cos$.

What your submission might look like

You submission might look like a string of equalities. However, you should indicate why each equality you write is valid. If you are just using facts/techniques from precalculus, you may write "by precalculus facts" or "algebra." If you are using a definition of something (like the definition of a derivative), you must state "by definition of -." If you are using a fact I said you could assume, you should indicate that.

The following are two examples of what your proof might look like, for a different problem.

[^0]Example. Without using the power rule, write a proof showing that

$$
\frac{d}{d x}\left(x^{2}+x\right)=2 x+1
$$

Proof.

$$
\begin{align*}
\frac{d}{d x}\left(x^{2}+x\right) & =\lim _{h \rightarrow 0} \frac{(x+h)^{2}+(x+h)-\left(x^{2}+x\right)}{h} \tag{0.0.0.5}\\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 h x+h^{2}+x+h-x^{2}-x}{h} \tag{0.0.0.6}\\
& =\lim _{h \rightarrow 0} \frac{2 h x+h+h^{2}}{h} \tag{0.0.0.7}\\
& =\lim _{h \rightarrow 0} 2 x+1+h \tag{0.0.0.8}\\
& =2 x+1 . \tag{0.0.0.9}
\end{align*}
$$

The first equality is the definition of derivative. The next lines, (0.0.0.6) and (0.0.0.7) are just algebra. I can divide by h in (0.0.0.8) because we know $h \neq 0$ when we take this limit. The last equality is because as h approaches 0 , the function $2 x+1+h$ approaches $2 x+1$.

Here is another way to write this proof:
Example 0.0.1. Without using the power rule, write a proof showing that

$$
\frac{d}{d x}\left(x^{2}+x\right)=2 x+1
$$

Proof.

$$
\begin{array}{rlr}
\frac{d}{d x}\left(x^{2}+x\right) & =\lim _{h \rightarrow 0} \frac{(x+h)^{2}+(x+h)-\left(x^{2}+x\right)}{h} & \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 h x+h^{2}+x+h-x^{2}-x}{h} & \text { definition of derivative } \\
& =\lim _{h \rightarrow 0} \frac{2 h x+h+h^{2}}{h} & \\
& =\lim _{h \rightarrow 0} 2 x+1+h & \\
& =2 x+1 . &
\end{array}
$$

[^0]: ${ }^{4}$ I bet you can prove this, though, by multiplying the top and bottom of the fraction by $\cos (h)+1$.

