Lab worksheet for Thursday, April 15, 2021 **Practice:** IVT & Limits equaling ∞

Exercise 1:

a) Show that there is a root of the equation $4x^3 - 6x^2 + 3x - 2 = 0$ between 1 and 2.

b) Can you find a better approximation for that root?

Exercise 2:

a) Show that there is a solution to the equation cos x = x on the interval (0,1).
b) If f(x) = x² + 10 sin x, show that there is a number c such that f(x) = 1000.

Exercise 3: Suppose f is continuous on [1,5] and the only solutions of the equation f(x)=6 are x=1 and x=4. If f(2)=8, explain why f(3) > 6.

Exercise 4: Compute the following limit if it exists. If it does not exist, explain why.

- a) $\lim_{x \to 3} \frac{2x}{x-3}$ b) $\lim_{x \to -3} \frac{x+2}{x+3}$ c) $\lim_{x \to 0} \frac{2-x}{x^2}$ d) $\lim_{x \to 1} \frac{2-x}{(x-1)^2}$
- e) $\lim_{x \to 2^-} \frac{x^2 2x}{x^2 4x + 4}$

Exercise 5:

a) The graph of the function $f(x) = \tan x$ is given below. What can we say about the limits

$$\lim_{x \to \frac{\pi^+}{2}} \tan x, \quad \lim_{x \to \frac{\pi}{2}^-} \tan x, \text{ and } \lim_{x \to \frac{\pi}{2}^-} \tan x?$$

b) Given that $tan x = \frac{sin x}{cos x}$. Justify your answer intuitively by looking at what happens to sinx and cosx when x approaches $\frac{\pi}{2}$ from the left and from the right.