
Lecture 28

Practice with epsilon-delta

28.1 Some notation
Here is some fancy math notation.

1. =∆ – an arrow with two tails – means “implies.” So for example, x = 4 =∆
x is even is a correct use of the symbol =∆ . The sentence “I am old =∆ I
am 65” is an incorrect use (because not every old person is 65). If the arrow
pointed in the other direction, it would be a correct use.

2. ’ – an upside down A – means “for all,” or “for every.”

3. ÷ – a backward E – means “there exists,” or “there is,” or “you can find.”
Putting this all together, we can re-write the definition of limxæa f(x) = L as

follows:

If ’‘ > 0, ÷” > 0 such that (x ”= a)&(|x ≠ a| < ”) =∆ |f(x) ≠ L| < ‘.

The & is just the usual “and” symbol. The main purpose of this notation is to save
space and make things shorter-looking; your job is to be able to logically write out
what the above condition means.

28.2 Practice problems
Let’s practice some more epsilon-delta problems. In the next section, you will see
some sample problems worked out. These are the kinds of problems you should be
able to do for next time.
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Exercise 28.2.1. Let f(x) = 3x + 7. Show that whenever |x ≠ 1| < 2
3 , we can

conclude that |f(x) ≠ 10| < 2.
(Your answer won’t be a number. Instead, your answer will be a string of equal-

ities and inequalities that ultimately show that |f(x) ≠ 10| < 2. Put another way,
you are being graded for your work!)

Exercise 28.2.2. Let f(x) = 5x + 7. Show that if |x ≠ 2| < 1
5 , then |f(x) ≠ 17| < 1.

Exercise 28.2.3. Let f(x) = 5x + 7. Show that if |x ≠ 2| < 1
5 , then |f(x) ≠ 17| < 3.

(Yes, every number is the same as the previous problem except for the 3.)

Exercise 28.2.4. Let f(x) = 3x + 7. Find me a number ” so that, whenever
|x ≠ 1| < ”, we can conclude that |f(x) ≠ 10| < 1

4 .

Exercise 28.2.5. Let f(x) = 3x+7. Suppose somebody gives you a positive number
‘. Find me a number ” so that, whenever |x ≠ 1| < ”, we can conclude that |f(x) ≠
10| < ‘. (Your ” can be expressed in terms of ‘.)

Exercise 28.2.6. Let f(x) = x2 + 3x + 1. Suppose |x ≠ 1| < 1
12 . Show that

|f(x) ≠ 5| < 1
2 .

Exercise 28.2.7. Let f(x) = x2 + 3x + 1. Can you find me a number ” so that,
whenever |x ≠ 1| < ”, we can conclude that |f(x) ≠ 5| < 1

4?

Exercise 28.2.8. Let f(x) = x2 + 3x + 1. Hiro gives you a number ‘ > 0. Can you
find me a number ” so that, whenever |x≠1| < ”, we can conclude that |f(x)≠5| < ‘?
(Your ” can be expressed in terms of ‘.)

Exercise 28.2.9. Let f(x) = 2x3 + 4x2 + 7. Show that if ” <
Ò

‘
6 , then |x| < ”

implies that |f(x) ≠ 7| < ‘.

28.3 Sample problems
Exercise 28.3.1. Let f(x) = 5x + 7. Show that whenever |x ≠ 1| < 1

15 , we can
conclude that |f(x) ≠ 12| < 1

3 .
(Your answer won’t be a number. Instead, your answer will be a string of equal-

ities and inequalities that ultimately show that |f(x) ≠ 10| < 2. Put another way,
you are being graded for your work!)
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Solution. Let’s first simply f(x) ≠ 10 as much as we can.

|f(x) ≠ 10| = |5x + 7 ≠ 12| (28.3.1)
= |5x ≠ 5| (28.3.2)
= 5|x ≠ 1|. (28.3.3)

This number could be huge if x is huge; but we are only asked about “whenever
|x ≠ 1| < 1

15 , so let’s see what we can conclude when this inequality holds. Well,
because |x ≠ 1| < 1

15 , we can multiply this inequality by 5 on both sides to get

5|x ≠ 1| < 5 · 1
15 (28.3.4)

= 1
3 . (28.3.5)

So tracing through the equalities and inequalities we just worked through, we can
conclude that

|f(x) ≠ 10| <
1
3 .

Which is what the problem wanted us to show!
In a test, just writing out the lines from (28.3.1) to (28.3.5) would get you full

credit. To be safe, you may wan to indicate/write that you used the condition that
|x ≠ 1| < 1

15 in line (28.3.4).

Exercise 28.3.2. Let f(x) = 5x + 7. Show that if |x ≠ 2| < 1
4 , then |f(x) ≠ 17| < 5

4 .

Solution.

|f(x) ≠ 17| = |5x + 7 ≠ 17| (28.3.6)
= |5x ≠ 10| (28.3.7)
= 5|x ≠ 2| (28.3.8)

< 5 · 1
4 (28.3.9)

= 5
4 . (28.3.10)

We used that |x ≠ 2| < 1
4 in Line (28.3.9).

Exercise 28.3.3. Let f(x) = 3x + 3. Find me a number ” so that, whenever
|x ≠ 1| < ”, we can conclude that |f(x) ≠ 6| < 1

4 .
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Solution.
|f(x) ≠ 6| = |3x + 3 ≠ 6| (28.3.11)

= |3x ≠ 3| (28.3.12)
= 3|x ≠ 1|. (28.3.13)

So we want 3|x ≠ 1| to be less than 1
4 . Well, if we want the inequality

3|x ≠ 1| <
1
4

to be true, it’s equivalent to wanting the inequality

|x ≠ 1| <
1
12

to be true. So, so long as ” is any number equal to or less than 1
12 , the assumption

that |x ≠ 1| < ” means

|x ≠ 1| < ” (28.3.14)
=∆ 3|x ≠ 1| < 3” (28.3.15)

Æ 3 · 1
12 (28.3.16)

= 1
4 . (28.3.17)

So I can give you any ” that’s less than or equal to 1
12 . For example, ” = 1

12 , or
” = 1

13 . For such a ”, the above work shows that whenever |x ≠ 1| < ”, we can
conclude that |f(x) ≠ 6| < 1

4 .
Exercise 28.3.4. Let f(x) = 3x+6. Suppose somebody gives you a positive number
‘. Find me a number ” so that, whenever |x ≠ 2| < ”, we can conclude that |f(x) ≠
12| < ‘. (Your ” can be expressed in terms of ‘.)
Solution.

|f(x) ≠ 12| = |3x + 6 ≠ 12| (28.3.18)
= 3|x ≠ 6|. (28.3.19)

So

|f(x) ≠ 12| < ‘ (28.3.20)
≈∆ 3|x ≠ 6| < ‘ (28.3.21)

≈∆ |x ≠ 6| <
‘

3 . (28.3.22)



28.3. SAMPLE PROBLEMS 17

In other words, so long as |x ≠ 6| < ‘
3 , we are guaranteed that |f(x) ≠ 12| < ‘. So

we can choose ” to equal ‘
3 , or any positive number less than ‘

3 .

Exercise 28.3.5. Let f(x) = x2 + 5x + 1. Suppose |x ≠ 1| < 1
12 . Show that

|f(x) ≠ 7| < 1
2 .

Solution.

|f(x) ≠ 7| = |x2 + 5x + 1 ≠ 7| (28.3.23)
= |x2 + 5x ≠ 6|. (28.3.24)

At this stage, we need to remember a fact I mentioned in class: No matter what, so
long as the limit is correct, this polynomial can be factored by (x ≠ a). In our case,
a = 1 (because we are bounding |x ≠ 1| in the problem) and sure enough, we can
factor so that

|x2 + 5x ≠ 6| = |(x ≠ 1)(x ≠ 5)|. (28.3.25)
Finally, we want things that look like |x ≠ 1| to pop up as much as possible in our
expressions. This is because |x ≠ 1| < 1

12 is the only fact we are allowed to use about
the number x. So for example, x ≠ 5 can be re-written to be (x ≠ 1) ≠ 4. So let’s do
that.

|(x ≠ 1)(x ≠ 5)| = |(x ≠ 1)((x ≠ 1) ≠ 4)|. (28.3.26)
Next, remember that |AB| = |A| · |B|. So

|(x ≠ 1)((x ≠ 1) ≠ 4)| = |x ≠ 1| · |(x ≠ 1) ≠ 4|. (28.3.27)

Finally, we use the triangle inequality, which tells us that |C + D| Æ |C| + |D|. So

|(x ≠ 1) ≠ 4| Æ |x ≠ 1| + |4|. (28.3.28)

Multiplying both dies of this inequality by |x ≠ 1|, we see that

|x ≠ 1| · |(x ≠ 1) ≠ 4| Æ |x ≠ 1| · (|x ≠ 1| + 4) . (28.3.29)

We have come a long way to find that (by tracing through all the equations above,
along with the one inequality):

|f(x) ≠ 7| Æ |x ≠ 1| · (|x ≠ 1| + 4) . (28.3.30)

Because the doodle on the right, (|x ≠ 1| + 4), is always bigger than or equal to
|f(x) ≠ 7|, if we can guarantee that this doodle is less than ‘, then we know that
|f(x) ≠ 7| is also less than ‘.
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Well, we are told that |x ≠ 1| is less than 1
12 . So let’s see what happens to the

doodle:

|x ≠ 1| · (|x ≠ 1| + 4) <
1
12 ·

3 1
12 + 4

4
. (28.3.31)

Whatever is in the parentheses is certainly smaller than 1 + 5, so we can write that
1
12 ·

3 1
12 + 4

4
<

1
12 · 5 (28.3.32)

= 5
12 . (28.3.33)

On the other hand,
5
12 <

6
12 (28.3.34)

= 1
12 . (28.3.35)

Combining all the above, line by line, we conclude that |f(x) ≠ 7| < 1
12 , as desired.

(Your solution is the entirety of the work above!)

Exercise 28.3.6. Let f(x) = x2 + 4x + 1. Hiro gives you a number ‘ > 0. Can
you find me a number ” so that, whenever |x ≠ (≠1)| < ”, we can conclude that
|f(x) ≠ (≠2)| < ‘? (Your ” can be expressed in terms of ‘.)

Solution.

|f(x) ≠ (≠2)| = |x2 + 4x + 1 + 2| (28.3.36)
= |x2 + 4x + 3| (28.3.37)
= |(x + 1)(x + 3)| (28.3.38)
= |x + 1||(x + 1) + 2| (28.3.39)
Æ |x + 1| (|x + 1| + 2) . (28.3.40)

Let’s suppose that |x + 1| is less than some number C, so |x + 1| < C. Then we can
conclude that

|x + 1| (|x + 1| + 2) . < |x + 1| (C + 2) . (28.3.41)

If further |x + 1| is less than ‘
C+2 , we conclude that

|x + 1| (C + 2) <
‘

C + 2 · (C + 2) (28.3.42)

= ‘. (28.3.43)
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So, for any positive number C, choose ” to be any positive number less than C and
less than ‘

C+2 . Then the work above guarantees that |x + 1| < ” guarantees that
|f(x) ≠ (≠2)| < ‘.

So for example, we could choose ” to be any number less than 1 and less than
‘
3 .

Exercise 28.3.7. Let f(x) = 2x3 + 4x2 + 3. Show that if ” <
Ò

‘
6 and if ” < 1, then

|x| < ” implies that |f(x) ≠ 3| < ‘.

Solution.

|f(x) ≠ 3| = |2x3 + 4x2 + 3 ≠ 3| (28.3.44)
= |2x3 + 4x2| (28.3.45)
= 2|x3 + 2x2| (28.3.46)
= 2|x2||x + 2|. (28.3.47)

We are asked to show that the condition |x| < ” implies something. Well, if |x| < ”,
then—given what we know about ”—we conclude that |x| <

Ò
‘
6 and |x| < 1. So

2|x2||x + 2| < 2
3Ú

‘

6

42
(1 + 2) (28.3.48)

= 2
3

‘

6

4
(3) (28.3.49)

= ‘. (28.3.50)

The string of equalities and inequalities above shows that |f(x) ≠ 3| < ‘, as desired.


