Lab worksheet for Tuesday, April 6, 2021

Practice: Puncture Law, Epsilon-Delta

Exercise 1: Compute the following limits:

a)
$$\lim_{h \to 0} \frac{(3+h)^2 - 9}{h}$$

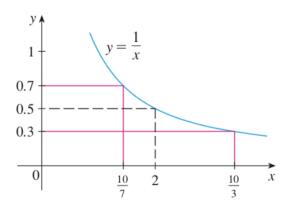
b)
$$\lim_{x \to 1} g(x)$$
 where $g(x) = \begin{cases} x+1 & \text{if } x \neq 1 \\ \pi & \text{if } x = 1 \end{cases}$

c)
$$\lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1}$$

d)
$$\lim_{x \to -4} \frac{x^2 + 5x + 4}{x^2 + 3x - 4}$$

e)
$$\lim_{x \to 7} \frac{\sqrt{x+2}-3}{x-7}$$

Exercise 2:

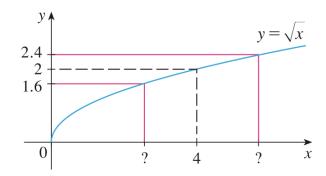

a) Find a number δ such that if $|x| < \delta$ and $x \neq 0$, then $\left| \frac{x^2 + 3x}{x} - 3 \right| < 0.001$

b) Find a number δ such that if $|x| < \delta$ and $x \neq 0$, then $\left| \frac{2x^3 + 6x}{x} - 6 \right| < 0.002$

Exercise 3:

a) Use the given graph of $f(x) = \frac{1}{x}$ to find a number δ such that

if
$$|x - 2| < \delta$$
 then $|\frac{1}{x} - 0.5| < 0.2$



b) Use algebra to solve the problem in part a.

Exercise 4:

a) Use the given graph of $f(x) = \sqrt{x}$ to find a number δ such that

if
$$|x-4| < \delta$$
 then $\left| \sqrt{x} - 2 \right| < 0.4$

b) Use algebra to solve the problem in part a.