Lab worksheet for Thursday, 25 March 2021

Practice: Applications of integration

Note: All of the models in the exercises are entirely fictional. You should give units and express an exact form of your answers before giving a decimal form/approximation.

Exercise 1:

a) The population of a town grows at a rate of $r(t)$ people per year (where t is time in years). We consider in 2010, $\mathrm{t}=0$. At $\mathrm{t}=3$, the town's population was 1000 people. What does $1000+$ $\int_{3}^{8} r(t) d t=1500$ mean?
b) A water tank is filled at a rate of $r=(t)$ liters per minute (where t is the time in minutes). What does $\int_{1}^{7} r^{\prime}(t) d t$ represent?

Exercise 2: The total expected revenue from selling tickets for a certain concert as a function of a single ticket's prices, x, changes at a rate of $r(x)=17-0.24 x$ thousands of dollars per dollar. When $x=70$, the total expected revenue is 128 thousand dollars. What is the total expected revenue when the ticket price is $\$ 80$?

Exercise 3: An object is moving so that its speed after t minutes is $v(t)=1+4 t+3 t^{2}$ meters-perminute. How far does the object travel during the $3^{\text {rd }}$ minute?

Exercise 4: Find the function whose tangent has the slope $3 x^{2}+6 x-2$ and whose graph passes through the point $(0,6)$.

Exercise 5: A tree has been transplanted and after x years is growing at a rate of $1+\frac{1}{(x+1)^{2}}$ meters-per-year. After 2 years, it has reached a height of 5 meters. How tall was it when it was planted?

Exercise 6: It is estimated that the population of a certain country is growing at a rate of $e^{0.002 t}$ million people per year. If the current population is 50 million, what will the population be 10 years from now?

Exercise 7: It is estimated that x years from now the value of an acre of farmland will be increasing at a rate of $a(x)=\frac{0.4 x^{3}}{\sqrt{0.2 x^{4}+8000}}$ dollars per year. If the land is currently worth $\$ 500$ per acre, how much will it be worth in 10 years?

