Lecture 21

Areas between curves

We've so far seen how to find areas of regions between (graphs of) functions and the x-axis. But we can make more interesting shapes by looking at regions between graphs of two functions.

Below is a picture of two functions, f and $g . f$ is in blue, and is concave down. g is in red, and is concave up.

How would we find the area of the shaded region?

Well, let's look at this region as obtained by taking a big region, and subtracting off another. Observe:

In blue is the area between the graph of f and the x -axis, while in red is the area between the graph of g and the x-axis. Overlaying the pictures, we see that our original region is obtained by removing the red region from the blue region.

So in this particular example, we can conclude that

$$
\text { Area of region between } f \text { and } g=\int_{a}^{b} f d x-\int_{a}^{b} g d x
$$

Here, a and b are where the graphs of f and g intersect; they are the rightmost and leftmost points of the region we seek:

The upshot is as follows:
Proposition 21.0.1. Suppose that the graphs of $f(x)$ and $g(x)$ intersect at the points a and b, with $a<b$. Suppose also that $f(x) \geq g(x)$ for all points x along the interval $[a, b]$. Then the area of the region formed by $f(x)$ and $g(x)$ is given by

$$
\int_{a}^{b} f(x)-g(x) d x .
$$

For a problem like this, you may typically be given values of a and b, or you may have to find the values of a and b yourself. To find a and b, you have to solve for the numbers a and b at which $f(a)=g(a)$ and $f(b)=g(b)$.

Example 21.0.2. Find the area between the graphs of the functions $\cos (x)$ and $x^{2}-1+\cos (x)$.

We must identify where the two functions intersect. This happens when

$$
\cos (x)=x^{2}-1+\cos (x)
$$

Solving this equation, we arrive at the conclusion that x must equal -1 or 1 . Since $-1<1$, we set $a=-1$ and $b=1$.

Next we must decide which function is larger than (i.e., on top of) the other. We can test this at any point between -1 and 1 , so let's try $x=0$. Then $\left(0^{2}\right)-1+\cos (0)$ is less than $\cos (0)$, so we let $\cos (0)$ be the "on top" function. The proposition above tells us to subtract the bottom function from the top function, and integrate form a to b :

$$
\int_{-1}^{1}(\cos (x))-\left(x^{2}-1+\cos (x)\right) d x .
$$

We can simplify the integrand before integrating:

$$
=\int_{-1}^{1}-x^{2}+1 d x
$$

Now we conclude

$$
\begin{align*}
\int_{-1}^{1}-x^{2}+1 d x & =\frac{-1}{3} x^{3}+\left.x\right|_{-1} ^{1} \tag{21.0.1}\\
& =\left(\frac{-1}{3}(1)^{3}+(1)\right)-\left(\frac{-1}{3}(-1)^{3}+(-1)\right) \tag{21.0.2}\\
& =\left(\frac{2}{3}\right)-\left(\frac{-4}{3}\right) \tag{21.0.3}\\
& =2 \tag{21.0.4}
\end{align*}
$$

In case you are curious, here is what the region looks like:

21.1 Practice problems

Exercise 21.1.1. Determine the area of the region bounded by $y=\frac{8}{x}, y=3 x$ and $x=5$.

Exercise 21.1.2. Determine the area of the region bounded by $x=2+y^{2}, x=1-y^{2}$, $y=2$ and $y=-3$. (You may want to ask Hiro about this one.)

Exercise 21.1.3. Find the area of the region bounded by $y=x^{2}-x-6$ and $y=2 x+4$.

Exercise 21.1.4. Find the area of the region bounded by $y=x+1$ and $y=9-x^{2}$.
Exercise 21.1.5. Find the area of the region bounded by $y=x$ and $y=x^{2}$.
Exercise 21.1.6. Find the area of the region bounded by $x=1-y^{2}$ and $y=y^{2}-1$.

21.2 For next time

Keep practicing integration, and u substitution, and finding areas between curves.

