Lecture 10

Second derivatives, concavity, and minima/maxima

10.1 Second derivatives

Today, we will practice taking "second derivatives," and knowing when they are positive or negative.

Definition 10.1.1. The second derivative of f is the derivative of the derivative ${ }^{1}$ of f. We denote the second derivative by

$$
\begin{equation*}
f^{\prime \prime}, \quad \text { or } \quad \frac{d}{d x}\left(\frac{d}{d x} f\right), \quad \text { or } \quad \frac{d^{2}}{d x^{2}} f, \quad \text { or } \quad \frac{d^{2} f}{d x^{2}} . \tag{10.1.1}
\end{equation*}
$$

Example 10.1.2. Let $f(x)=3 x^{2}+x-7$. Then the (first) derivative of f is

$$
f^{\prime}(x)=6 x+1 .
$$

If we take the derivative of $f^{\prime}(x)$, we end up with the second derivative of f :

$$
f^{\prime \prime}(x)=6 .
$$

Example 10.1.3. Here are more examples of functions and their second derivatives. You should verify these examples:

- If $f(x)=\sin (x)$, then $f^{\prime \prime}(x)=-\sin (x)$.

[^0]- If $f(x)=e^{x}$, then $f^{\prime \prime}(x)=e^{x}$.
- If $f(x)=e^{5 x}$, then $f^{\prime \prime}(x)=25 e^{5 x}$.
- If $f(x)=x^{3}-5 x^{2}$, then $f^{\prime \prime}(x)=6 x-10$.

Example 10.1.4. Let's find the second derivative of $f(x)=\ln (x)$. As defined above, we just need need to take the derivative twice. Let's take the first derivative:

$$
f^{\prime}(x)=\frac{1}{x} .
$$

(This is something we learned in class.) Now let's take another derivative - for example, by using the quotient rule - to find

$$
f^{\prime \prime}(x)=\frac{0 \cdot x-1 \cdot 1}{x^{2}}=-\frac{1}{x^{2}}
$$

That is, the second derivative of $\ln x$ is $-1 /\left(x^{2}\right)$.
If you know how to take derivatives, you know how to take second derivatives. So you see how our skills are building on each other-make sure you practice taking derivatives!

Example 10.1.5. Let $f(x)=x^{2}-2$. Where is the second derivative positive?
Let's find the second derivative. We see that

$$
f^{\prime}(x)=2 x
$$

so

$$
f^{\prime \prime}(x)=2
$$

So the second derivative is always 2, meaning the second derivative is positive everywhere.

Example 10.1.6. Let $f(x)=x^{3}-3 x^{2}+3$. Where is the second derivative positive? Let's find the second derivative. We see that

$$
f^{\prime}(x)=3 x^{2}-6 x
$$

so, taking the derivative of $f^{\prime}(x)$, we find:

$$
f^{\prime \prime}(x)=6 x-6
$$

So the second derivative is positive when $6 x-6$ is positive. This happens exactly when $6 x>6$ - that is, when $x>1$.

As a bonus: The second derivative is negative when $6 x<6$-that is, when $x<1$.
Below is a graph of $f(x)$, and I have shaded in bold the part of the graph where the second derivative is positive:

Example 10.1.7. Let $f(x)=x^{4}-24 x^{2}+50$. Where is the second derivative positive?
Let's find the second derivative. We see that

$$
f^{\prime}(x)=4 x^{3}-48 x
$$

so, taking the derivative of $f^{\prime}(x)$, we find:

$$
f^{\prime \prime}(x)=12 x^{2}-48
$$

So the second derivative is positive when $12 x^{2}-48$ is positive. This happens exactly when $12 x^{2}>48$ - that is, when $x^{2}>4$. But $x^{2}>4$ exactly when $x<-2$ or $x>2$.

As a bonus: The second derivative is negative when $x^{2}<4$-that is, when x is between -2 and 2 .

Below is a graph of $f(x)$, and I have shaded in bold the part of the graph where
the second derivative is positive:

Example 10.1.8. Let $f(x)=3 \sin (x)$. Where is the second derivative positive?
Let's find the second derivative. We see that

$$
f^{\prime}(x)=3 \cos (x)
$$

so, taking the derivative of $f^{\prime}(x)$, we find:

$$
f^{\prime \prime}(x)=-3 \sin (x)
$$

So the second derivative is positive when $-3 \sin (x)$ is positive. This happens exactly when $\sin (x)$ is negative. And based on our trigonometry knowledge from precalculus, we know that this happens when

- x is between π and 2π,
- x is between 3π and 4π,
- x is between $-\pi$ and 0 ,
- x is between -3π and $-\pi$,
-

Below is a graph of $f(x)$. I have shaded in bold the part of the graph where the second derivative is positive:

For next class, I expect you to be able to do the following: For each of the functions $f(x)$ below, (i) State where the function has a positive second derivative, and (ii) Shade in bold where the graph of the function has positive second derivative. (You will be provided the graph of $f(x)$.)

(a) $f(x)=-x^{4}+24 x^{2}-50$.

84LECTURE 10. SECOND DERIVATIVES, CONCAVITY, AND MINIMA/MAXIMA

(b) $f(x)=x^{2}$.
(c) $f(x)=\cos (x)$.
(d) $f(x)=\tan (x)$.

You have seen examples of graphs with positive second derivative. Here are some examples, with the positive-second-derivative regions shaded in bold:

1. $f(x)=x^{3}-3 x^{2}+3:$

2. $f(x)=x^{4}-24 x^{2}+50$:

3. $f(x)=e^{x}$:
4. $f(x)=3 \sin (x)$:

5. $f(x)=\tan (x)$:

10.2 Concavity

The point I want to make with these pictures is that the value of the second derivative gives us some idea of what the graph looks like. (Though not a complete picture.)

Intuition: On the regions where the second derivative is positive, the graph of f looks like a portion of an "upright bowl." Some students have described this as "opening upward" as well.

Conversely, when the second derivative is negative, the graph of f looks like a portion of an "upside-down bowl." But we have technical names, too. From now on, you are expected to know the following terminology:

Definition 10.2.1 (Concavity). We say that f is concave up at x if $f^{\prime \prime}(x)>0$. We say that f is concave down at x if $f^{\prime \prime}(x)<0$.

10.3 Inflection points

Definition 10.3.1. If $f^{\prime \prime}(x)=0$, and the concavity of f changes at x, we say that x is an inflection point.

Example 10.3.2. Here are some examples of functions and their graphs, with their inflection points labeled.

1. $f(x)=x^{3}-3 x^{2}+3:$
2. $f(x)=3 \sin (x)$:

3. $f(x)=x^{4}-24 x^{2}+50$:
4. $f(x)=e^{x}$:

(No inflection points.)
5. $f(x)=\tan (x)$:

6. $f(x)=x^{4}$:

(No inflection points, even though $f^{\prime \prime}(x)=0$ at $x=0$.)

Expectation 10.3.3. Based on looking at a graph, you are expected to be able to identify inflection points - an inflection point is a place at which a function switches concavity (from up to down, or from down to up).

Exercise 10.3.4. Now we're going to try to learn something about a function by knowing its derivative and second derivative. You can hunt for examples on the previous pages of this packet. Or, you can try understanding $f(x)=x^{2}$ and $f(x)=$ $-x^{2}$.

1. Can you find an example of a function f, and a point x, where $f^{\prime}(x)=0$ and f is concave up at x ? What does the function f look like near x ? How does the value of f at x compare to the value of f at nearby points?
2. Can you find an example of a function f, and a point x, where $f^{\prime}(x)=0$ and f is concave down at x ? What does the function f look like near x ? How does the value of f at x compare to the value of f at nearby points?

10.4 For next time

You should be able to tell me the second derivatives of the following functions:
(a) $x^{3}-3 x^{2}+x$
(b) $4 x^{2}+3 x-2$
(c) $e^{7 x}$
(d) $\sin (x)$

You should also be able to tell me where the following functions are concave up:
(a) $x^{3}-3 x^{2}+x$
(b) $4 x^{2}+3 x-2$
(c) $e^{7 x}$

[^0]: ${ }^{1}$ Yes, there are two appearances of the word "derivative"; this is not a typo.

