Lab worksheet for Thursday, 4 Feb 2021

Practice: Derivatives of Logarithms

- 1. Compute the following without calculators
- a) $ln(e^3)$.
- b) $e^{\ln(3)}$.
- c) $e^{\ln 2 + \ln 3}$.
- d) $e^{\ln 6 \ln 2}$.
- 2. Find the derivatives of the following fuctions:
- a) $f(x) = ln(x^3 + 1)$.
- b) $g(x) = 2\ln(\cos x + x^2 2x)$.
- c) $h(x) = ln(e^x + 2x^2)$.
- 3. Find the derivatives of the following fuctions:
- a) $f(x) = log_2x$.
- b) $h(x) = 2log_3(6x)$.

b)
$$g(x) = 3\log_5(3x^2+1)$$
.

- 4. A Cessna plane takes off from an airport at sea level and its altitude (in feet) at time t (in minutes) is given by $h = 2000 \ln (t + 1)$. Find the rate of climb at time $t = 3 \min$.
- 5. At what point on the curve $y = 1 + 2e^x 3x$ is the tangent line parallel to the line 3x y = 5? Illustrate by graphing the curve and both lines.
- 6. Find the derivatives of the following fuctions:

a)
$$y = x^{-\frac{2}{5}}$$
.

b) A(s) =
$$-\frac{12}{s^5}$$
.

c)
$$G(x) = \sqrt[4]{1 + 2x + x^3}$$
.

7. Find the derivatives of the following fuctions:

a)
$$y = \ln(2x^3 - x)^2$$
.

b)
$$y = \ln(\cos(x^2))$$
.

KEY

1. a) 3

b) 3

c) 6

d) 3

2. a) $\frac{3x^2}{x^3+1}$

b) $\frac{2(-sinx + 2x - 2)}{cosx + x^2 - 2x}$

c) $\frac{e^x + 4x}{e^x + 2x^2}$

3. a) $\frac{1}{x \cdot ln^2}$

b) $\frac{2}{x \cdot ln3}$

c) $\frac{18x}{(3x^2+1).ln5}$

4.

The graph of $h = 2000 \ln (t + 1)$ shows that it is a realistic model for the climb performance of a light aircraft. At low altitudes, where the air is more dense, the rate of climb is good, but as you go higher, the rate decreases.

The graph of $h=2000\ln{(t+1)}$.

To find the rate of climb (vertical velocity), we need to find the first derivative:

$$rac{d}{dt}2000\ln\left(t+1
ight)=rac{2000}{t+1}$$

At t=3, we have $v=2000/4=500~{
m feet/min}$.

So the required rate of climb is $500^{\circ}/min$, which is quite realistic.

5.
$$y' = 2e^x - 3$$
.

y' = 3 when $2e^x = 6$, $e^x = 3$, $x = \ln 3$. Then $y = 1 + 6 - 3\ln 3$.

6. a)
$$\frac{-2}{5}$$
. $x^{\frac{-7}{5}} = \frac{-2}{5\sqrt[5]{x^7}}$ b) $\frac{60}{s^4}$ c) $\frac{3x^2 + 2x}{4\sqrt[4]{1 + 2x + x^3}}$

b)
$$\frac{60}{s^4}$$

c)
$$\frac{3x^2+2x}{4\sqrt[4]{1+2x+x^3}}$$

7. a)
$$\frac{2(6x^2-1)}{2x^3-x}$$

b)
$$\frac{-2x.sin(x^2)}{cos(x^2)}$$
 = -2x.tan(x²)