
Lecture 6

The chain rule

Here are the summaries of the rules/laws we know for derivatives so far:

Rule/Law For derivatives
Constants (C)Õ = 0.

Scaling (mf)Õ = mf Õ

Sums (f Õ + gÕ) = f Õ + gÕ

Powers (xn)Õ = nxn≠1.

Composition (f ¶ g)Õ =???
Products (fg)Õ =???

Quotients (f/g)Õ =???

Today, we are going to practice taking derivatives of compositions. The rule we
use to compute derivatives of composition is called the chain rule.

6.1 Review of compositions
The hardest part of applying the chain rule, for most calculus students, is actually
understanding what a composition of functions is.

Remember that functions take inputs and produce outputs. A composition hap-
pens when a second function uses a first function’s output as the second function’s
input. If you like, a composition is like a relay race in track and field. The first
function passes a number onto the second function (instead of a baton).

When f is a function, and g is another function, we write

g ¶ f
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10 LECTURE 6. THE CHAIN RULE

for the composition. When we evaluate g ¶ f at a number x, we have:

(g ¶ f)(x) = g(f(x)).

The righthand side, in words, says: Apply f to x, and whatever f(x) is, plug it into
g.

Example 6.1.1. Let f(x) = x + 2 and g(x) = x2. Then

(g ¶ f)(x) = = g(f(x))
= g(x + 2)
= (x + 2)2

= x2 + 4x + 2. (6.1.1)

Example 6.1.2. Let f(x) = sin(x) cos(x) and g(x) = x2 + 3x + 2. then

(g ¶ f)(x) = = g(f(x))
= g(sin(x) cos(x))
= (sin(x) cos(x))2 + 3 sin(x) cos(x) + 2.

If you like, this last expression could also be written as

sin(x)2 cos(x)2 + 3 sin(x) cos(x) + 2 or sin2(x) cos2(x) + 3 sin(x) cos(x) + 2

You can also try to compute the “outside function” first.

Example 6.1.3. Let f(x) = sin(x) cos(x) and g(x) = x2 + 3x + 2. then

(g ¶ f)(x) = = g(f(x))
= (f(x))2 + 3f(x) + 2
= (sin(x) cos(x))2 + 3 sin(x) cos(x) + 2.

6.2 The Chain Rule
Theorem 6.2.1 (Chain rule). Suppose that g is di�erentiable at x, and that f is
di�erentiable at g(x). Then

(f ¶ g)Õ(x) = f Õ(g(x)) · gÕ(x).

Put another way,
d(f ¶ g)

dx
(x) = df

dx
(g(x)) · dg

dx
(x).
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I want to emphasize in words what the chain rule says: If you want to compute
the derivative of f ¶ g at x, then you must compute two things:

1. The derivative of f at g(x), and

2. The derivative of g at x.

The product of these two numbers gives the derivative of f ¶ g at x.
Using the chain rule, you can find the derivative of functions like

(a) (sin(x))3

(b) sin(x3)

(c) cos(x4 + 3x3 ≠ 2).

6.3 Identifying compositions
For many calculus students, the hardest part about taking derivatives is knowing
whether we can use the chain rule in a particular situation. Why is this so hard?
Well, in past classes, you’ve learned how to compose two functions, but you haven’t
learned to recognize whether a given function arises as a composition. Moreover,
to use the chain rule, you need to be able to recognize the functions that are being
composed.

Example 6.3.1. Let’s write each of the functions below as a composition g ¶ f .
Importantly, let’s identify the functions g and g.

(a) (sin(x))3

(b) sin(x3)

(c) cos(x4 + 3x3 ≠ 2).

Solution:

(a) What this expression tells us to do is to first evaluate sin(x), and then cube
the result. So the first function is f(x) = sin(x) and the second, or “outside”
function is g(x) = x3.

(b) This expression tells us to first cube x, and then take sin of the result. So the
first function is f(x) = x3, and the second, or “outside” function is g(x) = sin(x).
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(c) This expression tells us to take a number x, and first evaluate x4 + 3x3 ≠ 2, and
then take cos of the result. So f(x) = x4 + 3x3 ≠ 2, and g(x) = cos(x).

You should check in all three examples that (g¶f)(x) indeed gives rise to the original
expression.

6.4 Applying the chain rule
Now let’s apply the chain rule.

Example 6.4.1. Find the derivative of sin(x2 + 5).
Solution. We must first recognize that we behold a composition of two functions:

On the outside is sin, while the inside is x2 + 5. Hence we can use the chain rule.

d

dx
(sin(x2 + 5)) = ( d

dx
sin)(x2 + 5) · d

dx
(x2 + 5).

This is a product of two factors: The first factor, on the left, is the derivative of
sin, evaluated at x2 + 5. The second factor, on the right, is the derivative of x2 + 5
(evaluated at x).

Because we know d
dx sin = cos, and that d

dx(x2 + 5) = 2x, we conclude:

d

dx
(sin(x2 + 5)) = cos(x2 + 5) · 2x.

Or, in more palatable notation,

d

dx
(sin(x2 + 5)) = 2x cos(x2 + 5).

Exercise 6.4.2. Find the derivatives of the following functions:

1. (cos(x) + sin(x))3

2. cos(sin(x))

3. cos(2x4).

Exercise 6.4.3. We do not yet know how to take derivatives of a function like
h(x) = x1/3. However, we do know that if g(x) = x3, then g(h(x)) = x.

Using this, and the chain rule, can you find a formula for hÕ(x)? That is, can you
compute the derivative of x1/3?
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6.5 For next time: Exponentials, logarithms, and
e (A primer)

Remark 6.5.1. If you are already comfortable with functions like ex and ln x, and
how they relate to functions like 2x and log2 x, you can focus on Section 6.5.6.

For next time, you’ll need to be prepared to use exponentials and logarithms.
Consider the function f(x) = 4x. You have seen this in precalculus. In fact, you

probably knew that

40 = 1, 41 = 4, 42 = 4 ◊ 4 = 16, 43 = 4 ◊ 4 ◊ 4 = 64,

et cetera, back in high school. The cool fact is that even if x is not an integer, 4x is
a number that makes sense.

Example 6.5.2. Here are some examples:

1. It makes sense to raise something to a negative power:

4≠2 = 1
42 = 1

16 .

More generally, we have that
4≠n = 1

4n
.

2. It makes sense to raise something to a fraction:

4 1
3 = 3Ô4 is the cube root of 4.

More generally, we have that
41/n = n

Ô
4

is the nth root of 4. This root is the unique positive number so that its nth
power is equal to 4.

3. Another fraction example:
4 2

3 = 3Ô42.

(Note that this also equals ( 3Ô4)2.) Put into English, this means that 42/3 is
the cube root of 42, or the square of the cube root of 4. More generally,

4a
b = b

Ô
4a = ( b

Ô
4)a.
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6.5.1 Exponent laws!
Let’s see why the above statements are true.

You may have learned about the exponent laws in precalculus or back in high
school. One of these laws says:

4a+b = 4a · 4b

That is, exponentiation takes “addition” to “multiplication.” For example, 47 =
42+5 = 42 · 45. Another law says:

4a·b = (4a)b = (4b)a.

This means that exponentiation takes “multiplication” to “powers.” For example,
421 = 43·7 = (43)7. Also, we have that 421 = (47)3.

Example 6.5.3. Let’s verify that the exponent laws are consistent with our knowl-
edge of math. We have:

42+3 = 45 = 4 ◊ 4 ◊ 4 ◊ 4 ◊ 4 = (4 ◊ 4) ◊ (4 ◊ 4 ◊ 4) = 42 ◊ 43.

So indeed, 42+3 = 42 · 43.
We also have:

42·3 = 46 = 4 ◊ 4 ◊ 4 ◊ 4 ◊ 4 ◊ 4 = (4 ◊ 4) ◊ (4 ◊ 4) ◊ (4 ◊ 4) = (4 ◊ 4)3 = (42)3.

Remark 6.5.4 (Reminder). Let me also remind you that anything to the 0th power
is equal to 1. For example, 50 = 1. Likewise, fi0 = 1.

And, anything to the 1st power is that anything again. For example, 51 = 5.

Remark 6.5.5 (The reasoning for fractional and negative powers). Knowing these
laws is how you create the definitions for things like 4≠3 and 41/5. Indeed, if you
know what 43 is, and if you desire the law 43+(≠3) = 43 · 4≠3 to be true, you must

conclude that 4≠3 is equal to 1/43. For example,

43 · 4≠343+(≠3) = 40 = 1.

Dividing both sides by 43, we see

4≠3 = 1
43 .
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Likewise, the other law of exponent tells us

5 = 51 = 5 1
2 ·2 = (5 1

2 )2.

Taking the square root of both sides, we find
Ô

5 = 5 1
2 .

There’s nothing special about the number 5 here; anything to the 1
2 power is the

square root of that anything. Likewise, anything to the 1
3 power is the cube root.

6.5.2 The number e

The number e is called Euler’s constant sometimes, but it’s usually just called e.
(Eeee!) In your previous math classes, you probably didn’t have too much reason to
care about this deeply, except that it has some interesting roots in banking. However,
you will see why e is important in calculus.

For now, let me just say that e is an irrational number, and here are the first few
digits of its decimal expantion:

2.718281828459045235360287471352 . . . (6.5.1)

We will soon be dealing with the function f(x) = ex. You should think of this
function as behaving very much like f(x) = 4x. For example, we have that

e0 = 1, e1 = e, e2 = e ◊ e ¥ 7.38905609 . . . .

(We compute e2 using a computer or calculator; if we have a lot of time at the end
of this course, we’ll see how a computer does this!)

6.5.3 The logarithm
The logarithm base n of a number x is written

logn x.

The number logn x is the number you need to raise n to in order to obtain a value
x. For example,

log3 9 = 2.

This is because 2 is the number such that 32 = 9. As another example,

log3 81 = 4.
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(Just try computing 34 to see why this is true.)
Put another way, it is always true that

3log3 x = x.

We say that the logarithm base n is the inverse function to exponentiation base n.
(Put another way, if the output of the logarithm becomes the input of the exponential,
the final output is the initial input.)

In fact, it is also true that
log3(3x) = x.

Exercise 6.5.6. You should be able to compute the following:

(a) log2 8

(b) log3 243

(c) log2
Ô

2

(d) logfi fi3.

6.5.4 Natural logarithm
Because e is so special1, we give a special name to the logarithm base e. We define
the natural logarithm, or the natural log, to be the logarithm base e, and we denote
it as follows:

ln
So for example,

ln e = 1, ln(e3) = 3.

In general ln of a nice integer looks crazy; for example,

ln 2 = 0.69314718056 . . .

so if you like integers and rational numbers, ln is not your best friend. But it will
become a better friend as we realize how important ln and e are in calculus—in fact,
it is probably one of the most convincing pieces of evidence that crazy, transcendental

numbers like e have a place in our mathematical universe.2

1We will see why in the coming lectures
2There is another transcendental number, fi, that is obviously very important to mathematics. If

you don’t know what a transcendental number is, don’t worry; they are a special kind of irrational
number.
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In calculus, it will be very useful to know how to convert expressions like

5some power

into expressions base e; that is, into expressions like

esome other power.

Example 6.5.7. Let us convert 53 into an exponent with base e. Here is our work:

53 = (eln 5)3 (6.5.2)
= e(ln 5)·3 (6.5.3)
= e3 ln 5. (6.5.4)

The first equality is using the definition of logarithm base e. (Note that we don’t
need to know how to calculate ln 5, but we know that it exists as a number, so we just
use it.) The next equality follows from an exponent law: Exponentiation exchanges
multiplication of powers with iterated powers. The last line is just re-writing the
same expression in a nicer way.

6.5.5 Exponentials for non-rational powers
Now, you may not have thought deeply about how to calculate something like 4x

when x is, say, an irrational number. In this class, you only need to know this can

be done, and not how to do it.
So you only need to read this section if you’re curious about how something like

4fi is computed. I’ll illustrate by example.

Example 6.5.8. For example, how would you compute 4fi? It’s a three-step process.
First, we choose a collection of numbers that approximates fi really well. For

example, we could choose

3, 3.1, 3.14, 3.141, 3.1415, 3.14159, . . .

and so forth. Note that each of these numbers can be written as a fraction. (For
example, 3.14 is equal to 314/100; you can simplify this fraction if you like.) In
particular, we know how to calculate each of the following numbers:

43, 43.1, 43.14, 43.141, 43.1415, 43.14159, . . .

and so forth.
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Calculating all these numbers is the second step. For your edification, here are
the answers:

64, 73.516 . . . , 77.708 . . . , 77.816 . . . , 77.870 . . . , 77.880 . . . ,

and so forth.
Now, here is the third and most fun/di�cult step. We have to prove that this col-

lection of numbers “converges” to some number—put another way, that this sequence
has a limit.3 Then we define 4fi to be this limit.

6.5.6 For the quiz!
For the quiz, you should be able to simplify the following expression:

(a) eln 3

(b) eln e

(c) eln x

(d) eln 1

(e) eln fi

(f) ln(e3)

(g) ln(efi)

(h) ln(ex)

(i) ln(e3 · e5)

(j) ln(e3 · ex)

(k) ln(e3 · e≠3)

3Warning: This notion of limit is slightly di�erent from the notion of limit we have discussed
before. This is the limit of a sequence of numbers, while we have discussed in this class the limit of
a function at a point.


