Extra Credit Assignment 7

Due Friday, April 2, 11:59 PM

The natural log function \ln is kind of crazy. For example, we don't know how to compute $\ln (2)$ exactly by hand. In this extra credit assignment, we'll see how Riemann sums can help us approximate the value of $\ln (2)$.
(a) Using a calculator, find the value of $\ln (2)$ to 10 decimal places.
(b) Without using a calculator, tell me what the value of $\ln (1)$ is.
(c) Tell me why the integral $\int_{1}^{2} \frac{1}{x} d x$ tells you what $\ln (2)$ is.
(d) Now, let's approximate the integral $\int_{1}^{2} \frac{1}{x} d x$ using Riemann sums. Using the lefthand rule, compute the Riemann sum approximating this integral for the values of n indicated in the following table:

Table 1: default

n	$\sum_{i=0}^{n-1} \frac{1}{x_{i}} \frac{1}{n}$
1	1
2	$\frac{1}{2}\left(1+\frac{2}{3}\right)=0.8333333333$
3	$\frac{1}{3}\left(1+\frac{3}{4}+\frac{3}{5}\right)=0.7833333333$
4	
5	
10	
20	

(I have filled in the first three rows for you. You may use a calculator for the other rows.)
(e) According to your table, as n grows bigger, how do the values of your Riemann sums compare to the value $\ln (2)$ that your calculator told you?
(f) Based on your experience (be honest) how do you feel about Riemann sums as a way to approximate numbers like $\ln (2)$?

