Extra Credit Assignment 5

Due Friday, March 12, 11:59 PM

Respond to one of the following prompts. Your choice.

1. We've taken the power rule for granted. That is, that

$$
\left(x^{n}\right)^{\prime}=n x^{n-1} .
$$

Tell me why the power rule is true.
2. Here is a kind of "related rates" problem, but quite different. Usually in related rates problems, we know how a function depends on other factors (often via a formula), and we can deduce the rate of change of the function in terms of those factors.

But here is a different kind of problem: Suppose you know that the rate of change of something is proportional to the quantity of that something. (And this proportion does not change with time.) In other words,

$$
f^{\prime}(t)=C f(t)
$$

for some constant C. (Somebody might demand that C equal 5 , or 0 , or -1 , or $1 / \pi$; each such choice of C results in a different equation.)
What kind of function could $f(t)$ be? Can you write down all functions f that satisfy the above equation? Can you write down an f that satisfies the above equation for $C=5$? That is, can you write down an f so that

$$
f^{\prime}(t)=5 f(t) ?
$$

What if you change C ? And can you write down all such functions? How can you convince me that you've written down all of them?
3. Is there such a thing as a "smallest positive real number?" Explore. Why or why not?
4. Is there such a thing as a number called ∞ ? If so, what properties would/should/does it satisfy? Can you add with ∞ ? Subtract with it? Multiply, divide by it? Exponentiate it, or use it as a power? Can you take sin or cos of tan or arctan of it? Explore. Why or why not?

