## Extra Credit Assignment 1: Rational numbers

Due Friday, January 22, 11:59 PM

An integer is a positive or negative whole number. For example, $-5,2,0$, and 9999 are all integers.

A rational number is a number that can be written as a fraction of two integers. For example,

$$
\frac{-3}{2}, \quad \frac{1}{1}, \quad \frac{3}{1}, \quad \frac{14}{7}, \quad \frac{1}{3},
$$

are all rational numbers. (Note that the middle three also happen to be equal to integers! So integers are a special kind of rational number.)

You may have heard, or learned, at some point in your life that if you write out the decimal expansion of a rational number, the expansion will eventually begin to repeat some string of digits. For example,

$$
\frac{1}{3}=0.3333333 \ldots
$$

repeats the number 3 over an dover,

$$
\frac{789}{1000}=0.789000000000 \ldots
$$

eventually repeats the number 0 over and over, while

$$
\frac{523242}{7000}=74.748857142857142857142857 \ldots
$$

eventually repeats the sequence " 142857 " over and over.
Prompt. Why is the italicized statement above true?
Also, in the "opposite" direction: Is it true that if a decimal number eventually repeats some string of digits over and over, it must be a rational number?

