0.1 November 16th Lab: More long-term review for the final

Exercise 0.1.1. Write the 5th degree Taylor polynomial for $f(x)=\sin (x)$, centered at $a=0$.

Exercise 0.1.2. Compute the following integrals.
(a) $\int_{0}^{4} x^{3} d x$
(b) $\int_{0}^{\pi} \sin (x) e^{\cos (x)} d x$
(c) $\int_{1}^{3} \frac{2+2 x^{2}}{x+\frac{1}{3} x^{3}} d x$

Exercise 0.1.3. We have 100 feet-squared of cardboard to build a box with a square base and no top. What dimensions of the box will maximize the volume?

Exercise 0.1.4. (a) State the definition of the derivative of a function f at a point x.
(b) Using this definition, compute the derivative of $f(x)=|x|$ when $x>0$.
(c) Using this definition, compute the derivative of $f(x)=|x|$ when $x<0$.
(d) Using this definition, explain why $f(x)=|x|$ has no derivative where $x=0$.

Exercise 0.1.5. It is known that the gravitational force that a planet exerts on a spaceship is given by

$$
\frac{k m}{r^{2}}
$$

where m is the mass of the spaceship, k is some constant, and r is the distance of the spaceship from the center of the planet.
(a) How much work must be done to move a spaceship from 10,000 kilometers away from the center of the planet to 100,000 kilometers away? (Your answer should contain k and m in its answer.)
(b) How much work must be done to move a spaceship from 10,000 kilometers away from the center of the planet to $1,000,000$ kilometers away? (Your answer should contain k and m in its answer.)
(c) How much work must be done to move a spaceship from 10,000 kilometers away from the center of the planet to 10,000,000 kilometers away? (Your answer should contain k and m in its answer.)
(d) * How much work must be done to move a spaceship from 10,000 kilometers away from the center of the planet to a point "infinitely far away"? (Your answer should contain k and m in its answer.)

