Lecture 27

More more practice!

27.1 Word problems

Exercise 27.1.1. $V(t)$ measures the amount of water (in liters) in a water tank at time t (in hours from midnight last night).
(a) What units does $V^{\prime}(t)$ have?
(b) Suppose $V(t)=100-2^{t}$. On average, how much water is in the water tank between $t=2$ and $t=3$?

Exercise 27.1.2. $F(t)$ measures the amount of water (in liters per hour) entering or leaving a water tank at time t (in hours from midnight last night). If $F(t)$ is positive, it means the amount of water in the water tank is increasing, while if $F(t)$ is negative, the amount of water is decreasing.
(a) What units does $F^{\prime}(t)$ have?

From hereon, suppose $F(t)=-10+t^{2}$.
(b) On average, how quickly is the volume of water in the tank changing between $t=1$ and $t=3$? Make sure to specify if, on average, the amount of water in the tank is decreasing or increasing.
(c) Compute $\int_{0}^{4} F(t) d t$.
(d) Give a physical interpretation to the answer from your previous question.
(e) Are you able to tell me how much water is in the water tank at $t=4$?

Exercise 27.1.3. A gig worker is paid at a rate of $r(t)=10+\sin \left(\frac{1}{12 \pi} t\right)$, where $r(t)$ is in dollars per hour, and t is in hours from midnight.
(a) How much does the worker make if they work from 9 AM to 5 PM?
(b) How does their 9 AM - 5 PM earnings compare to the 9 AM - 5 PM earnings of someone working at a flat rate of 10 dollars an hour?
(Warning: The function $r(t)$ used here was arbitrary, and does not in any way purport to realistically model the wagers of particular gig workers.)

Exercise 27.1.4. (a) Give the definition of $\int_{a}^{b} f(t) d t$ that we have used in this class.
(b) State the fundamental theorem of calculus, as we have learned it in this class.

Exercise 27.1.5. Planet X exerts a force of $\frac{100}{x^{2}}$ Newtons on a box x kilometers away from the center of planet X.

How much work does it take to move the box from 1,000 kilometers away to 10,000 kilometers away from Planet X?

