
Lecture 22

u substitution

We saw last time that to find areas (i.e., to compute integrals) we must find an-
tiderivatives.

u substitution is a trick for finding antiderivatives.

22.1 Basic laws of integration

Before we get to u substitution, here are some basic properties about integrals.

(I) You can concatenate intervals.

⁄ b

a
f(x)dx +

⁄ c

b
f(x)dx =

⁄ c

a
f(x)dx. (22.1.1)

You actually used the above fact last time: To find the area of f over an
interval [a, c], you can divide the interval into two pieces–[a, b] and [b, c]—and
computed the area over each of those smaller intervals, then add the result.
Note that b doesn’t need to be a midpoint or anything; it’s just any point
between a and c. Here, for example, is a consequence of the above fact:

⁄ b

a
f(x)dx =

⁄ c

a
f(x)dx ≠

⁄ c

b
f(x)dx. (22.1.2)

(II) Integrals scale. Here is another fact. If m is any real number, we have
⁄ b

a
mf(x)dx = m

⁄ b

a
f(x)dx. (22.1.3)
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14 LECTURE 22. U SUBSTITUTION

That is, area scales (by m) if you scale f (by m). Intuitively, if you think of
f(x) as describing the height of a curvy fence at position x, if you make the
fence m times taller everywhere, the area also grows by m times. Here, m is
any real number. It could be zero or negative or positive.

(III) If you add the integrands, you add the integrals. Another fact that will
be useful is ⁄ b

a
f(x) + g(x)dx =

⁄ b

a
f(x)dx +

⁄ b

a
g(x)dx. (22.1.4)

Informally, if you have something of height f(x) at x, then you add on a height
of g(x) at every x, then the area of the resulting figure is obtained by adding
the areas given by f and given by g.

(IV) Reverse, reverse. The final fact that will be useful is
⁄ b

a
f(x)dx =

⁄ a

b
≠f(x)dx (22.1.5)

This is is a somewhat strange rule, but it will come up. So far, we’ve always hads b
a consist of numbers such that a < b; but as we compute, we will sometimes

end up with
s a

b with b > a. If this happens, you just reverse the sign of f and
reverse the roles of b and a. If you like,

s b
a tells you to take the area “from a

to b,” which usually has meant “from left to right.” If the integral tells us to
reverse directions by going from right to left (e.g., from b to a), we think of
the contributions from f negatively.

That’s it. Three rules. As a student, you might feel good that there’s “less to
memorize,” but actually, having fewer rules means you have fewer guideposts to rely
on, so you need to be more creative about how to compute integrals!

22.2 Some notation

For today you’ve practiced taking integrals. For example, to compute
⁄ 4

1

1
x

dx,

you must

1. find an antiderivative F to the integrand, and then
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2. compute F (b) ≠ F (a) (which in this case if F (4) ≠ F (1)).

We know that ln(x) has derivative given by 1/x, so we can take F (x) = ln x. We
thus find

⁄ 4

1

1
x

dx = ln(4) ≠ ln(1) (22.2.1)

= ln(4) ≠ 0 (22.2.2)
= ln 4. (22.2.3)

Let me introduce the following:

Notation 22.2.1. We write

F (x)
-----

b

a

to mean
F (b) ≠ F (a).

In other words,

F (x)
-----

b

a

= F (b) ≠ F (a).

Example 22.2.2. So for example, the above work could have been written

⁄ 4

1

1
x

dx = ln(x)
-----

4

1
(22.2.4)

= ln(4) ≠ ln(1) (22.2.5)
= ln(4) ≠ 0 (22.2.6)
= ln 4. (22.2.7)

As usual, this notation is meant to help you. I promise you’ll begin to use this
notation in no time, because you’ll always first the antiderivative first, and then
you’ll plug in b and a. This “vertical bar” notation will help you keep track of those
steps as you write.

22.3 More terms

Let me also review some things that you learned in lab.
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Definition 22.3.1. The indefinite integral is an old terminology that survives mostly
in calculus textbooks. The notation ⁄

f(x)dx

is called an “indefinite” integral because the integral does not specify where we are
integrating—i.e., there is no a and no b.

A lot of calculus textbooks ask you to “solve the indefinite integral.” I am not
a fan—at all—of this terminology. Regardless, because it is so prevalent in calculus
culture, I have to tell you about it to prevent you from experiencing confusion or
frustration should some other calculus professor torture you with this old terminology.

To “solve an indefinite integral” means to “find all antiderivatives of f(x).” (You
saw last time—via the Fundamental Theorem of Calculus (FTC)—why finding an
antiderivative helps you find the integral.)

If F is an antderivative of f(x), it is customary to write the following as a “correct
answer” to the calculus textbook’s problem of finding an indefinite integral:

⁄
f(x)dx = F (x) + C.

The +C is a perennially confusing notation. Let me explain it. Recall from the
lecture about the mean value theorem that we discovered the following fact: If G
and F have the same derivative (meaning F Õ = GÕ) then F ≠ G must be a constant
function. For example, it could be that F ≠ G = fi or F ≠ G = 0 or F ≠ G = 3.
The important part is that it could be any constant. So if F is an antiderivative,
every other antiderivative can be expressed as F+ something, where something is a
constant. that’s what the +C above means. The C stands for “constant,” and the
notation

s
f(x)dx = F (x) + C is a lazy way of saying “any antiderviative of f can

be obtained from F (x) by adding some constant C.”
Example 22.3.2. The indefinite integral

s
sin(x)dx is given by

≠ cos(x) + C.

I really dislike the language of “indefinite integral,” because we already have a
perfectly good word for the underlying idea one is exploring: Antiderivative. The
“+C” warning really just gives you a heads up that a lot of integral tables and
encyclopedia articles have +C because an antiderivative really could be obtained
from F by adding some constant, and a particular constant may be very important
for a particular engineering problem. But if some calculus person ever asks you to
find an “indefinite” integral, just find the antiderivative and write “+C.” And know
that the only reason you’re writing +C is to indicate that any other antiderivative
can be obtained by adding a constant to the one you found.
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22.4 u substitution

You can think of u substitution as like a “reverse chain rule.” Let me say what I
mean.

Suppose F (x) = g(h(x)). That is, F = g ¶ h, so that F is a composition the
functions g and h. Then you know that

F Õ(x) = gÕ(h(x)) · hÕ(x). (22.4.1)

That’s the chain rule.
In the last lecture, we saw the importance of being able to work backwards—that

is, can you recognize when you see something like gÕ(h(x)) · hÕ(x)? If so, all you need
to do to find the antiderivative is

• Recognize h, and

• Take the antiderivative of gÕ. Then to conclude, just

• Set F = g ¶ h.

Exercise 22.4.1. Find an antiderivative for the following functions:

(a) f(x) = 2x cos(x2).

(b) f(x) = 2x
x2+3

(c) f(x) = ≠ sin(sin(x)) · cos(x).

I am not exactly sure of why—perhaps because it is hard to recognize two deriva-
tives (gÕ and hÕ) at once—calculus textbooks teach us a technique called u substi-
tution to find antiderivatives in situations like this. It can sometimes be confusing,
and though I am not a huge fan of u substitution, I will teach it to you in case you
find it easier than eye-balling the chain rule.

The way u substitution works is by identifying the h in the equation (22.4.1).
For example, consider the indefinite integral

⁄
cos(x)

Ò
sin(x)dx. (22.4.2)

You might recognize a “function within a function,” i.e., a composition, in
Ò

sin(x).
You might recognize that the “inside function”—sin(x)—has a derivative given by the
factor outside the

Ô
≠≠ symbol, namely the cos(x) factor. Thus you can verify that
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the inside function h(x) = sin(x) says that our integrand is of the form gÕ(h(x))·hÕ(x).
In this case, then, we see that gÕ must be the square root function.

But, rather than thinking this all through, u substitution encourages you to stop
thinking and try to do algebra instead. (I am not a fan.) Here is how you do it:

Step One: One substitutes the inside function by a variable u. You should think
of u as a function of x. So, for example, a naive re-writing of (22.4.2) gives

⁄
cos(x)

Ô
udx. (22.4.3)

Things look worse right now—there is a u and an x and who knows what in the
world this means. Here is the (useful?) confusing part:

Notation 22.4.2 (du). Because u is a function of x, we can introduce a new symbol
called

du

that is defined to satisfy the following property:

du = du

dx
dx. (22.4.4)

I warn you that du and dx are just symbols—they are not numbers—so the fraction
notation is more misleading than it is useful. You can’t just cancel symbols willy-nilly
without knowing what they mean. Regardless, du—as a symbol—is defined precisely
a way that encourages such dangerous (and, in this case, correct) cancellation. In-
deed, note that the lefthand side of (22.4.4) can be obtained from the righthand side
by “cancelling” the dx.

Or, rearranging (22.4.4), we find

dx = 1
du
dx

du. (22.4.5)

End of notation.

Step Two: We plug in u(x) = sin(x), so that du
dx = cos(x). Then we can continue

to simplify (22.4.3):
⁄

cos(x)
Ô

udx =
⁄

cos(x)
Ô

u
1
du
dx

du (22.4.6)

=
⁄

cos(x)
Ô

u
1

cos(x) du (22.4.7)

=
⁄ Ô

u du. (22.4.8)
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Notice that we have used the definition of du to get rid of the dx.
Step Three: Take the integral in terms of u. What the indefinite integral in

(22.4.8) is asking is: Can you find the antiderivative of the square root function?
Yes, you can! Moreover, the integral is no longer viewing the integrand as a function
of x; the “du” symbol is telling you to think of the integrand as a function of u. Well,

d

du
(u3/2) = 3

2u1/2,

so we find that
d

du

2
3(u3/2) = u1/2.

In other words, we can solve the indefinite integral in (22.4.8) to find

⁄ Ô
u du = 2

3u3/2. (22.4.9)

And now let’s plug back in what u equals; we defined u to be u(x) = sin(x), so the
righthand side of (22.4.9) becomes

2
3u3/2 = 2

3(sin(x))3/2 = 2
3

Ò
sin(x)3.

Indeed, you can check that this function of x is an antiderivative of our original
function cos(x)

Ò
sin(x).

Here is the summary of u substitution:
⁄

gÕ(h(x))hÕ(x)dx =
⁄

gÕ(u)du.

In the end, if you find the integral
s

gÕ(u)du = g(u), make sure you substitute back
in h(x) = u(x) to get

⁄
gÕ(h(x))hÕ(x)dx = g(h(x)).

Here is (what I think is) a good application of u substitution.

Exercise 22.4.3. Find ⁄
tan(x)dx.
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22.5 The integral of tan(x)
Let’s note ⁄

tan(x)dx =
⁄ sin x

cos x
dx =

⁄
sin(x) · 1

cos(x)dx.

We note that sin(x) is (almost) the derivative of cos(x)—it’s o� by a sign. But it
almost looks like we can take

g(x) = 1
x

, h(x) = cos(x),

for then
g(h(x))hÕ(x) = 1

cos(x) · (≠ sin(x)).

So we have that
⁄

sin(x) · 1
cos(x)dx = ≠

⁄
(≠ sin(x)) · 1

cos(x)dx. (22.5.1)

Letting u = cos(x), we have that

du = ≠ sin(x)dx, dx = du

≠ sin(x) .

Hence (22.5.1) becomes

≠
⁄

(≠ sin(x)) · 1
cos(x)dx = ≠

⁄
(≠ sin(x)) · 1

u
· du

≠ sin(x) (22.5.2)

= ≠
⁄ 1

u
du (22.5.3)

But you know how to integrate 1
u ; the antiderivative is ln(|u|). Hence we have

≠
⁄ 1

u
du = ≠ ln(|u|) + C.

Now, let’s remember that u(x) = cos(x), so plugging this in, we have
⁄

tan(x)dx = ≠
⁄ 1

u
du = ≠ ln(|u|) + C = ≠ ln(| cos(x)|) + C. (22.5.4)

Here is one more simplification we can make: Remember the formula

a ln(b) = ln(ba).
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(If you don’t remember it, you should verify it using what you know about exponent
laws and the definition of ln!) In particular,

≠ ln(b) = ln(1
b
).

Thus, we can further modify (22.5.4) to become
⁄

tan(x)dx = ln(
---

1
cos(x)

---) + C.

Or, if you like secant, which is defined by sec(x) = 1/ cos(x), you can rewrite this as
⁄

tan(x)dx = ln(
--- sec(x)

---) + C.

Remark 22.5.1. If you prefer the “eyeball” method, you could have recognized that
tan(x) is of the form sin(x) ◊ something, and that this something has cos(x) in it.
Thus you could be inspired to use the (reverse) chain rule.

sin(x) · 1
cos(x) = hÕ(x) · gÕ(h(x)).

You recognize now that gÕ(x) has to be 1
x , so that g(x) has to be ln |x|. Then, by the

(reverse) chain rule,
⁄

gÕ(h(x))hÕ(x)dx = g(h(x)) + C = ln | 1
cos x

| + C.

I much prefer this method, but there are uses for u substition in one’s life, so if you
prefer to solve problems using u substitution (which will require you to get used to
manipulating equations like du = du

dx dx), go for it!

22.6 Preparation for next lecture

u substitution isn’t just for computing antiderivatives; it also allows you to compute
integrals! Here is the new fact you’ll practice for next quiz: If u(x) = h(x), then

⁄ b

a
gÕ(h(x))h(x)dx =

⁄ u(b)

u(a)
gÕ(u)du. (22.6.1)
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Example 22.6.1. Let’s evaluate
⁄ 4

1

2x

1 + x2 dx.

If I want to use u substitution, I recognize that 2x is the derivative of 1 + x2. So I
will set u(x) = 1 + x2, so that du = 2xdx. Then

⁄ 2x

1 + x2 dx =
⁄ 2x

u
· 1

2x
du =

⁄ 1
u

du.

What the fact (22.6.1) tells us is that we can evaluate the definite integral in using
the u variable form of the integral:

⁄ 4

1

2x

1 + x2 dx =
⁄ u(4)

u(1)

1
u

du.

So we find
⁄ u(4)

u(1)

1
u

du = ln |u|
-----

u(4)

u(1)
(22.6.2)

= ln |u|
-----

1+42

1+12
(22.6.3)

= ln |u|
-----

17

2
(22.6.4)

= ln |17| ≠ ln |2| (22.6.5)

= ln |17|
|2| (22.6.6)

= ln 17
2 . (22.6.7)

If we want, we could have computed this without using u substitution. Again rec-
ognizing that if h(x) = 1 + x2, then hÕ(x), we have that the integrand is equal to
hÕ(x) · 1

h(x) . Thus we want gÕ(x) = 1
x , which has integral g(x) = ln |x|. We conclude

⁄ 4

1
gÕ(h(x))hÕ(x) dx = g(h(x))

-----

4

1
(22.6.8)

= ln |1 + 42| ≠ ln |1 + 12| (22.6.9)
= ln |17| ≠ ln |2| (22.6.10)

= ln 17
2 . (22.6.11)
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For next time, I expect you to be able to compute the following integrals (using
u substitution, or otherwise):

(a) ⁄ 1

0
x(x2 ≠ 1)5dx.

(b) ⁄ 1/12

0

1
3
Ô

1 ≠ 6x
dx.

(c) ⁄ 3

2
xex2

dx

(d) ⁄ 1

0
x(x2 ≠ 1)5dx.

(e)
⁄ fi/2

fi/4

cos(x)
sin2(x) dx.


