
Lecture 21

Integration and the Fundamental

Theorem of Calculus

Given a function f , along with an interval [a, b], we saw last time that we can
approximate the area under the graph of f .1 We did this by choosing n rectangles,
so that their widths were given by (b ≠ a)/n, and by choosing a height of each
rectangle as dictated by f . We ended up with a summation that looked like

n≠1ÿ

i=0
f(xi)

b ≠ a

n
(Lefthand rule).

Now, these approximations should get better the more rectangles that we use—that
is, the bigger n is. In this class, we will define the integral as follows:

Definition 21.0.1 (The integral). The integral of f from a to b is defined to be:

lim
næŒ

nÿ

i=1
f(xi≠1)

b ≠ a

n
.

We denote this limit by
⁄ b

a
f(x)dx.

In words: This is the limit of the numbers we obtain from the Riemann sum when
we let n grow larger and larger.

1“Under” is informal; remember, this is the area between the graph of f and the x-axis, computed
with “sign,” where regions under the x-axis are declared to have negative areas.
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21.1 Getting used to, and reading, the notation

This is the first time you’ve seen the notation
⁄ b

a
f(x)dx.

Let’s dissect this.
First, the above collection of symbols can be described as:

“The integral of f(x) from a to b.”

If you were reading the symbols out loud like an automated reader, you would say
“the integral from a to b of f of x, dx.” 2

Second:
s

is called “the integral symbol.” And a and b are called the bounds of
the integral. The interval [a, b] is sometimes called the region of integration.

Third: f(x) is referred to as the integrand of the integral.
Finally, let’s talk about where this notation comes from. Well, we saw a Riemann

sum:
nÿ

i=1
f(xi)(b ≠ a)/n

which we could rewrite (by thinking of (b ≠ a)/n as a change in x) as
nÿ

i=1
f(xi)�x.

Now imagine being supremely lazy and neglecting to write the super and subscripts
for �: ÿ

f(xi)�x.

Remember I told you earlier that � is a Greek letter that turned into S. Imagine
being so lazy that you start writing your S really quickly, until your writing started
to look like this: ⁄

f(xi)�x.

At this point you’ve become so lazy that you don’t know that the i mean any more,
so let’s drop that: ⁄

f(x)�x.

2Analogously, you would describe f Õ(x) as the derivative of f at x, but if you read the symbols
out loud, you would say “f prime of x”.
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And � is a Greek letter that has now-a-days turned into D. For no good reason,
let’s make it lower-case: ⁄

f(x)dx.

You should remember that you’re taking the area between x = a and x = b, so let’s
at least remember that: ⁄ b

a
f(x)dx.

And this is one way to reason out how this notation came about. This notation
actually has very good reasons to exist, especially because the symbol dx actually
has an incredibly fancy meaning in the math community. But we’re not ready to
confront that meaning in this class. (Nor will we be ready until you have had enough
multivariable calculus.)

21.2 Definitions versus intuitions

Remember that I make a hubbub about what is a definition, and what is an intuition.
Here is a table of intuitions and definitions for our three most important ideas:

Term Definition Intuition

Derivative The limit of a di�erence
quotienta

The slope of the line tangent to
the graph of f at x.

Integral The limit of values of Rie-
mann sumsb

The area between the graph of f
and the x-axis.

aWe define f Õ(x) = limhæ0
f(x+h)≠f(x)

h .
bWe have defined

s b
a f(x)dx = limnæŒ

qn
i=1 f(xi) b≠a

n .

Why do I make a hubbub? Intuition is how you should think about things:
They guide you in solving problems. Definitions give content to your intuition, and
allow you to actually prove things. For example, even if you have an intuition for
derivatives, you would be hard-pressed to prove that (sin x)Õ = cos x without the
definitions of both limit and of derivative!

I emphasize this. Remember, the equation (sin x)Õ = cos x isn’t true just because
some teacher told you it was; it’s true because you can prove it, and the proof doesn’t
consist of people waving their hands about what the slope of the tangent line should
be—the proof consists of using definitions and logical deductions to get from Step A
to Step B. This is the heart of mathematics.
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That being said, just as with derivatives, I will only ask you to prove some of
the rules of integration, and other rules, I will (hypocritically) ask you to just take
them on faith. And, as I mentioned before, your intuition of thinking about integral
as area will help you most.

21.3 The rate of change of area

Let’s say you have a function f(x), and you want to compute
⁄ b

a
f(x)dx.

As I’ve advocated, let’s think of this as the area. Now let’s say you want to nudge
the region of integration just a little bit bigger—say by some number h.

0

20

40

60

a b 0

20

40

60

a b b + h

In other words, suppose we want to compare
⁄ b

a
f(x)dx with

⁄ b+h

a
f(x)dx.

The di�erence is (using our intuition) the area of f(x) between b and b + h—this is
the darker shaded region in the picture above. In other words, the di�erence is

⁄ b+h

a
f(x)dx ≠

⁄ b

a
f(x)dx =

⁄ b+h

b
f(x)dx = area of darker shaded region. (21.3.1)

Exercise 21.3.1. (a) By approximating the shaded region using a single rectangle
of width h and using the lefthand rule for this single rectangle, approximate

⁄ b+h

a
f(x)dx ≠

⁄ b

a
f(x)dx.
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(b) Using your answer from part (a), write down an approximation for
s b+h

a f(x)dx ≠
s b

a f(x)dx

h
.

Intuitively, would you expect your approximation to be better or worse as h
shrinks?

(c) Based on part (b), make a guess as to what

lim
hæ0

s b+h
a f(x)dx ≠

s b
a f(x)dx

h

should be in term of f and b.

(d) Note that the area
s b

a f(x)dx should change if we change the bounds of integration—
and in particular, if we change b. So, keeping a unchanged for now, let’s define
a function F as follows:

F (b) =
⁄ b

a
f(x)dx.

What can you say about the derivative of F at b?
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21.4 A guide for the previous exercise

How can we approximate the area of the grey region? As the exercise suggests,
let’s use a single rectangle, and the lefthand rule. Then the grey region can be
approximated by a single rectangle of width h and height f(b). So

⁄ b+h

b
f(x)dx ¥ height ◊ width = f(b) · h. (21.4.1)

Here, the symbol ¥ means “approximately equals.” Putting (21.3.1) and (21.4.1)
together, we find: ⁄ b+h

a
f(x)dx ≠

⁄ b

a
f(x)dx ¥ f(b) · h.

So, dividing both sides by h, we have that
s b+h

a f(x)dx ≠
s b

a f(x)dx

h
¥ f(b).

Of course, if h is a tiny number, this approximation should get better and better. In
other words, that ¥ symbol will behave more like an = symbol as h shrinks. Hmm.
We’ve learned what it means to let h approach 0—we should take a limit. Thus,
knowing that ¥ should become closer and closer to becoming an equals sign as h
goes to 0, we seem to get

lim
hæ0

s b+h
a f(x)dx ≠

s b
a f(x)dx

h
= f(b). (21.4.2)

Remark 21.4.1. Let’s take a moment to parse this. This is saying the following: We
can think of area—i.e., of

s b
a f(x)dx as something that depends on b.3 And (21.4.2)

is telling us that the rate of change at b—that is, the derivative of the area function
at b—seems to be very close to being f(b) itself.

Let’s really hone in on this observation. Let’s say F (b) is the function that tells
us the area of f between a and b. Then (21.4.2) seems to be telling us that

dF

db
(b) = f(b).

In other words, whatever function F measures area, it seems to be a function whose
derivative recovers f .

3Intuitively, if we increase b, we are increasing the region of integration, and the area we’re
interested in clearly changes. So the number, area, changes depending on b.
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21.5 The fundamental theorem of Calculus

All the “seems” and “¥” and “approximates” on the previous page was maddeningly
imprecise, suggestive, incomplete. Thanks to Isaac Newton and Gottfried Wilhelm
Leibniz, it turns out that what “seems” actually “is.”

Theorem 21.5.1 (The fundamental theorem of calculus). Let F (x) be any function
such that

F Õ(x) = f(x).

Then, so long as f is continuous on the interval [a, b], we have:
⁄ b

a
f(x)dx = F (b) ≠ F (a).

A function F (x) such that F Õ(x) = f(x) is called an antiderivative of f(x). What
the fundamental theorem says is that we can compute an integral of f (which was
defined in a way that had nothing to do with derivatives!) by finding antiderivatives
of f .
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21.6 Preparation for next time

21.6.1 Finding antiderivatives

I expect you to be able to do the following:

(a) Let f(x) = 3. Find a function F (x) so that F Õ(x) = f(x).

(b) Let f(x) = 5x. Find a function F (x) so that F Õ(x) = f(x).

(c) Let f(x) = x3. Find a function F (x) so that F Õ(x) = f(x).

(d) Let f(x) = sin x. Find a function F (x) so that F Õ(x) = f(x).

(e) Let f(x) = cos x. Find a function F (x) so that F Õ(x) = f(x).

(f) Let f(x) = ex. Find a function F (x) so that F Õ(x) = f(x).

(g) Let f(x) = 1/x. Find a function F (x) so that F Õ(x) = f(x).

21.6.2 Finding areas

I also expect you to be able to use the fundamental theorem of calculus (and the
intuition that the integral is the area) to do the following problems:

(a) Let f(x) = 3x2. Find the area of f(x) along the interval [1, 4].

(b) Let f(x) = ex. Find the area of f(x) along the interval [0, ln 3].

(c) Let f(x) = cos x. Find the area of f(x) along the interval [0, fi/4].
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21.6.3 Solutions to finding atiderivatives

Here are some solutions.

(a) We have seen functions whose derivatives are just constants—for example, if
F (x) = 7x, then we know F Õ(x) = 7. So if we want F Õ(x) to equal 3, we can
take F (x) = 3x.
However, we could also choose F (x) = 3x+13. For then the derivative is again
F Õ(x) = (3xÕ) + (13)Õ = 3 + 0 = 3. Indeed, we could add any number (constant)
to 3x to obtain a function that satisfies F Õ(x) = f(x).

(b) Let f(x) = 5x. Find a function F (x) so that F Õ(x) = f(x). We know that the
derivative of x2 is 2x, so if we just multiply x2 by the correct multiple, we can
engineer the derivative to become 5x. So let’s try

F (x) = 5
2x2.

Then by the power rule, we indeed find that F Õ(x) = 5
2 ◊ 2 ◊ x = 5x.

And, just as in the previous problem, if we add a constant, so we try

F (x) = 5
2x2 + 999

for example, then we still have F Õ(x) = 5x2.
Do you see a pattern? There are infinitely many possible choices for F , always.
And they’ll always di�er by some constant.4

(c) We know that x4 has derivative 4x3. So just as in the previous problem, let’s try

F (x) = 1
4x4.

Then F Õ(x) = 1
4 · 4x3 = x3. And, as before, we can add any constant to 1

4x4 to
obtain another function whose derivative is given by f(x) = x3. For example,

F (x) = 1
4x4 + fi

is a valid solution.
4In fact, we proved after the mean value theorem that if two functions have the same derivative,

the two functions must di�er by a constant.
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(d) Let f(x) = sin x. As before, we must utilize our knowledge of derivatives to
realize that F (x) = ≠ cos(x) is a valid choice. And, as before, we can also take
something like F (x) = ≠ cos(x) + 23 (or any constant) as a viable candidate.

(e) Let f(x) = cos x. Then we can take F (x) = sin x, plus any constant we desire.

(f) Let f(x) = ex. We can take F (x) = ex, plus any constant we desire.

(g) Let f(x) = 1/x. We can take F (x) = ln x, plus any constant we desire.

At this point, you may be tired of me telling you how we can add any constant
we want. For this reason, we will often write

F (x) = ln x + C

instead of writing out “F (x) could be ln x plus any constant we desire.” The capital
C stands for “constant.”

21.6.4 Solution to finding areas

(a) Let f(x) = 3x2. Find the area of f(x) along the interval [1, 4].

In this problem, [a, b] = [1, 4]—that is, a = 1 and b = 4. The area is computed
by finding the integral

⁄ b

a
f(x)dx =

⁄ 4

1
3x2dx.

(Note that we never remove the “dx” when we solve problems; we’ll see a use for
this later on.) By the fundamental theorem of calculus, we know that

⁄ 4

1
3x2dx = F (4) ≠ F (1)

if F is any function satisfying F Õ(x) = 3x2. Well, we can find such a function.
Let F (x) = x3. So, by the fundamental theorem of calculus (FTC), we have

⁄ 4

1
3x2dx = F (4) ≠ F (1) = (4)3 ≠ (1)3 = 64 ≠ 1 = 63.
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How cool is that? You just proved that the region shaded below:
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80

a = 1 b = 4

has area given by 63!

As we see from above, the steps to finding the area/integral
s b

a f(x)dx are: (1)
Find an antiderivative for f , then (2) plug in b and a into the antiderivative, and
take di�erence.

(b) Let f(x) = ex. Find the area of f(x) along the interval [0, ln 3]. Again, area is
given by

⁄ ln 3

0
f(x)dx.

By the fundamental theorem of calculus, if we find some F (x) such that F Õ(x) =
f(x), then

⁄ ln 3

0
f(x)dx = F (ln 3) ≠ F (0).

Well, ex is its own derivative, so we can take F (x) = ex. Then

⁄ ln 3

0
f(x)dx = F (ln 3) ≠ F (0) = eln 3 ≠ e0 = 3 ≠ 1 = 2.

This proves that the region shaded below
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0
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20

a = 0 b = ln 3

has area given by 2.

(c) Let f(x) = cos x. Find the area of f(x) along the interval [0, fi/4]. Let F (x) =
sin x. Then

⁄ fi/4

0
cos(x)dx = F (fi/4) ≠ F (0) = sin(fi/4) ≠ sin(0) =

Ô
2

2 ≠ 0 =
Ô

2
2 .

So you’ve proven that the area of the region shaded below

≠2

≠1

0

1

2

a = 0 b = fi/4

is
Ô

2
2 .


