
Lecture 12

Mean Value Theorem (and logic
and di�erentiability)

12.1 If-then statements, and converses
Last time we saw the following:

Proposition 12.1.1. Let x be a local extremum of f . Then x is a critical point of
f .

The above proposition is using some new vocabulary from last time. remember,
a local extremum is a point that is either a local minimum or maximum. (This means
that the value of f at x is smaller than all nearby points’ values, or larger than all
nearby points’ values.) And a critical point of f is a point x at which f

Õ(x) = 0.
Another way to state the proposition is by using an if-then construction:

If x is a local extremum of f, then x is a critical point of f .

The italicized part is the hypothesis of the if-then statement, and the underlined
part is the conclusion of the if-then statement.

I then asked in class whether if x is a critical point, then x must be a local
extremum. We saw, in the example of f(x) = x

3, that this isn’t true. For this
function, x = 0 is a critical point, but x = 0 is not a local extremum. (By moving
even a tiny bit to the right, f becomes larger, while moving even a tiny bit to the
left, f becomes smaller.) In other words, the statement

“If x is a critical point of f then x is a local extremum of f”
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is a false statement.
The two if-then statements above are very closely related. The two statements

look identical, except the hypothesis and the conclusion have been swapped! We say
that the two statements are converses to each other. (So the first statement is the
converse of the second statement, and the second statement is the converse of the
first statement.)

Remark 12.1.2 (Converse of, converse to). The prepositions involved can be a little
confusing. When “converse” is used as a noun, we often say “... is the converse of ...’

But when “converse” is used as an adjective, we often say “... is converse to ...”

What we have witnessed is: A statement can be true even though its
converse is false. A statement can be false even though its converse is
true.

Example 12.1.3. If a shape is a square, then it has four sides. (True statement.)
The converse statement is: If a shape has four sides, then it is a square. (False

statement. There are four-sided shapes like parallelograms and rectangles that may
not be squares!)

12.2 Di�erentiability
Today and tomorrow, we’re going to talk about something called the Mean Value
Theorem. But we need to build up to it first. Like most mathematically meaningful
statements, a theorem will be an “if-then” statement. (It will have a hypothesis and
a conclusion.) But we need some new words to talk about the hypothesis, and to
gain an appreciation for it.

Definition 12.2.1. Let f be a function, and x a number. We say that f is di�er-
entiable at x if the limit

lim
hæ0

f(x + h) ≠ f(x)
h

exists.

This limit should look familiar. It’s the thing we write down to define and com-
pute the derivative! I’ve mentioned a couple times that when the secant lines through
x and x + h converge to a single line, then we’ll call the resulting single line is called
the tangent line to f at x. And we’ll call its slope the derivative.

But we haven’t really looked at examples where the “when” fails. That is, we
haven’t looked at examples of functions where a tangent line might not exist at x!
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Let’s see such an example. It’s pretty much the only example you’ll need to know,
at least for this course.

Example 12.2.2. Let f(x) = |x|.
What does the graph of this function look like? Well, remember that the absolute

value function just returns the “size” of a number, or the distance of that number
from 0. For example, |5| is just 5. And | ≠ 5| is also 5. Another way to think about
absolute value is that it converts every number to its “positive form.” So if a number
is already positive, the absolute value just returns that number, while if a number is
negative, the absolute value makes it positive.

One way to express this is to use what’s called a piecewise notation for the
function:

f(x) =

Y
__]

__[

x x > 0
≠x x < 0
0 x = 0.

In other words, f sends a number x

• to itself if x > 0, or

• to negative of itself if x < 0, or

• to zero if x = 0.

Note that the graph of f will thus consist of two parts: The function f(x) = x when
x is positive, the function f(x) = ≠x when x is negative, and the point telling us
that f(0) = 0. All told, the graph (drawn in blue) looks like this:

≠4 ≠2 0 2 4

≠4

≠2

0
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I claim that f(x) = |x| does not have a tangent line at x = 0.
Indeed, if you look at the secant line through x and x + h for positive h, the

secant line is a line of slope +1. But any secant line through x and x+h for negative
h is a line of slope -1.

So there’s no way that a line of slope +1, and a line of slope -1, will converge to
a single line as h approaches zero.

Put another way, if we have a function g(h) that assigns +1 to h whenever h > 0,
but assigns ≠1 whenever h < 0, then there’s no value that g(h) “wants to approach”
as h approaches zero. So the di�erence quotient does not have a limit as h æ 0.

In sum, we have see that

The function f(x) = |x| is not di�erentiable at x = 0.

In other words, the function does not have a derivative at x = 0.

12.2.1 The Mean Police
Let’s begin with a story about the Mean Police. A college friend told me that this
he watched a video about the Mean Police to learn about the Mean Value Theorem.

One day, you drive from Austin to San Antonio, which is about an 80-mile drive.
You make the drive in 50 minutes.

Then one day, the Mean Police come knocking on your door. They say that they
know you drove 80 miles in 50 minutes. So, by their math,

80 miles
50 minutes = 80 miles

5
6hours = 80

5
6

miles per hour = 480
5 miles per hour = 96 miles per hour

was the speed at which you drove.
You retort: No, no. There’s no way I was driving 96 miles per hour that whole

time! I began in Austin, and I couldn’t have been driving 96 miles per hour through
that city.

The Mean Police respond: The speed limit is 80 miles per hour at the fastest;
and we know that you were driving at least 96 miles per hour at some point. So
that’s enough for us to issue you a ticket.

Of course, you don’t want a ticket, but are the Mean Police correct? It’s not like
they even had a radar gun to measure your speed. Were you driving at least 96 miles
per hour at some point?
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The math The Mean Police are correct, of course. They don’t know when exactly
you were driving above the speed limit, and they don’t know where, either. But if
you could make an 80-mile trip in 50 minutes, at some point you were driving at
least 96 miles per hour. And there’s no place in Texas where the speed limit is that
high. So you were breaking the speed limit at some point!

And this basic math is quite powerful. From the perspective of the Mean Police,
they didn’t need to set up radar guns or have police stake out strips of highway to
measure your speed; all they needed to know were your starting point, ending point,
and the length of time you traveled.

Let’s translate this into math language. Suppose f is the function that ways how
far you’ve traveled, where f is in units of miles, and the input will be in units of
hours. (So at time t hours into your trip, you’ve traveled f(t) miles.)

What the police know are that

f(0) = 0 (because you haven’t traveled any miles when you begin, 0 hours into your trip)

and
f(5/6) = 80 because you traveled 80 miles in 5/6 of an hour.

And what they conclude is that at some time t, you were traveling at 96 miles per
hour. In other words, the police are claiming that at some time t, they know that

f
Õ(t) = 96.

Remember, 96 came from measuring

f(5/6) ≠ f(0)
5/6 = 96.

To summarize: If we know where you began, where you ended, and how long it
took you, we don’t know how exactly you drove, but we do know that you reached a
certain speed at some point.

12.2.2 Mathematical translation
So let’s suppose that f is some function. In the example above, f could be a function
that takes the time as an input, and outputs where you are.

What we know is

1. A starting time a,
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2. An ending time b,

3. Where you began, f(a), and

4. Where you ended, f(b).

Based on this information, we can conclude: At some point between a and b (inclu-
sive), you had a speed of (f(b)≠f(a))/(b≠a). In other words, there is some moment
c in the interval [a, b] such that f

Õ(c) = (f(b) ≠ f(a))/(b ≠ a).
We’ll state this as a theorem:

Theorem 12.2.3 (Mean Value Theorem). Let f be a function, and choose two
numbers a and b for which a < b. Suppose that f is di�erentiable at every point
between a and b. Then there exists some number c in the interval [a, b] such that

f
Õ(c) = f(b) ≠ f(a)

b ≠ a
.

Example 12.2.4. At noon yesterday, the temperature in San Marcos was 60 degrees
Farenheit. At noon today, the temperature was 62 degrees Farenheit. Over those 24
hours, the temperature changed by a total of +2 degrees Farenheit. So, by the Mean
Value Theorem (assuming that temperature is a di�erentiable function of time),
we know there was some moment in those 24 hours at which the temperature was
changing at a rate of 2

24 degrees per hour. That is, a rate of 1/12 degrees per hour.
(That does not mean that the temperature changed 1/12 degrees in some hour;

it means at some moment in time, 1/12 deg/hr is how fast the temperature was
changing.)

In this example, c is that moment, a is noon yesterday, b is noon today, f(a) is
60, f(b) is 62, and f(x) measures the temperature at time x (measured in hours).

Expectation 12.2.5. You are expected to read and to understand the statement of
Theorem 12.2.3 above.

12.3 Studying the Mean Value Theorem
We can write the Mean Value Theorem out as an if-then statement. You should
try to do this on your own, too, but here’s what we would get. Remember that
if-then statements have a hypothesis and a conclusion: “If HYPOTHESIS, then
CONCLUSION.”

In the Mean Value Theorem, the hypotheses are these:
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• f is a function1

• a and b are two numbers with a < b, and

• f is di�erentiable at every number between a and b.

Then the conclusion is:

• There is some number a < c < b so that the derivative of f at c is equal to the
value

f(b) ≠ f(a)
b ≠ a

.

In the real world, you can often ignore the hypothesis that “f must have a deriva-
tive at every point between a and b,” because this is often true or assumed. But in
math, we often have functions like |x| that don’t have derivatives at certain points,
so the hypothesis is quite important.

Example 12.3.1. Let f(x) = x sin(x). Note that f(0) = 0, and that f(fi
4 ) is equal

to
fi

4 sin(fi

4 ) = fi

4 · 1 = fi

4 .

Setting a = 0 and b = fi
4 , we can compute that

f(b) ≠ f(a)
b ≠ a

=
fi
4 ≠ 0
fi
4 ≠ 0 = 1.

So, at some point between a = 0 and b = fi
4 , there is a number c for which

f
Õ(c) = 1.

And we know what f
Õ is—the derivative of f is the function f

Õ(x) = sin(x)≠x cos(x).
So, in other words, there is some number c between 0 and fi

4 so that

sin(c) ≠ c cos(c) = 1.

At first glance, the equation above is kind of subtle! Is it obvious that there should
be a number so that sin(c) ≠ c cos(x) is equal to 1?

Well, the Mean Value Theorem doesn’t tell us where c is, but it does tell us that
c exists.

1Technically, f needs to be continuous, too, but we’re going to ignore this necessary hypothesis
for now.
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Example 12.3.2. Let f(x) = x
3. Let’s note that f(1) = 1 and f(1.1) = 1.331.

Then
f(1.1) ≠ f(1)

1.1 ≠ 1 = 1.331 ≠ 1
0.1 = 0.331

0.1 = 3.31.

So, using the Mean Value Theorem, we know that there is some number c between
1 and 1.1 that satisfies the equation f

Õ(c) = 3.31.
Well, what is f

Õ? We know that f
Õ(x) = 3x

2. So if we were to try to solve the
equation f

Õ(x) = 3.31, we would see the following:

f
Õ(x) = 3.31
3x

2 = 3.31

x
2 = 3.31

3

x = ±
Û

3.31
3

(12.3.1)

It’s probably not obvious at first glance whether the square root of (3.31)/3 is between
1 and 1.1. But the Mean Value Theorem tells us that it must be (because, by solving
the equation above, we see that this is the only number at which the derivative of f

is equal to 3.31).
So this isn’t a typical use of the Mean Value Theorem, but it’s something.

12.4 Some general applications of the Mean Value
Theorem

12.4.1 Functions that aren’t constant
Definition 12.4.1 (Constant functions). We’ll call a function constant if for every
pair of input values, the outputs are the same. That is, f is constant if f(a) = f(b)
for every choice of a and b.

A less complicated way to visualize this is that the graph of f is a horizontal line.
But visualizations can be misleading, so I’m going to use the complicated defini-

tion.

Proposition 12.4.2. Suppose f is di�erentiable. If we know that f is not a constant
function, then there is some c for which f

Õ(c) is not zero.
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Proof. Suppose we know that f is not constant. That means that there are two
di�erent inputs that have di�erent outputs. Let’s call these inputs a and b, so that
the outputs f(a) and f(b) are not equal.

Because f is di�erentiable, we can use the Mean Value Theorem. The theorem
tells us that there is some input c for which

f
Õ(c) = f(b) ≠ f(a)

b ≠ a
.

On the right, the numerator is not zero, because we know that f(b) ”= f(a). This
means that the fraction on the righthand side is some fraction with a non-zero number
in the numerator. Such fractions never equal zero. So f

Õ(c) is not zero.
That finishes the proof!

12.4.2 There are many ways to write a proof for a statement
As with any good medium of expression, there are many ways to write a proof. But
the content must be solid. Below are some examples.

By the way, the white box at the end means “end of proof.” Sometimes, people
also write “QED” (quod erat demonstrandum) at the end of a proof.

Proof. Because f is not constant, we can find two numbers a ”= b with f(a) ”= f(b).
We can note

f(b) ≠ f(a)
b ≠ a

is a number that does not equal zero, because the numerator is not zero.
On the other hand, the Mean Value Theorem says that (because f is di�eren-

tiable) there is some number c satisfying

f
Õ(c) = f(b) ≠ f(a)

b ≠ a
.

The righthand side—as we just said—is not zero. Thus f
Õ(c) ”= 0. Putting everything

together, we see that there is some point c at which f
Õ(c) ”= 0.

Proof. By the Mean Value Theorem, for any two points a and b, we know there is
some c in [a, b] so that

f
Õ(c) = f(b) ≠ f(a)

b ≠ a
.

So we are finished if we can find a, b so that f(b) ≠ f(a) does not equal zero (for
then f

Õ(c) will be non-zero). Well, we know that a and b satisfying f(b) ≠ f(a) exist
because f is non-constant. QED
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Proof. We know the following:

1. There are two numbers a and b so that f(b) ≠ f(a) ”= 0.

2. For some number c between a and b,

f
Õ(c) = f(b) ≠ f(a)

b ≠ a
.

3. The fraction f(b)≠f(a)
b≠a does not equal zero.

The first statement is true because f is not a constant function. The second statement
is true by the Mean Value Theorem (which we can use because f is di�erentiable).
The third statement is true because the fraction has a non-zero numerator (by the
first statement).

Putting 2. and 3. together, we have found a number c so that f
Õ(c) does not

equal zero. QED.


