Lab Worksheet for September 14, 2021

Practice with Derivatives using the Product and Quotient Rule.
1.) Find the derivative of the following functions.
a.) $f(x)=x^{2} \ln (x)$.
b.) $g(x)=-\cos (x)\left(3 x^{3}-x^{2}\right)$
c.) $h(x)=e^{x}\left(x^{2}-3 x\right)$
2.) Find the derivative of the following functions.
a.) $f(x)=\frac{2 x^{5}}{x}$.
b.) $\mathrm{g}(\mathrm{x})=\frac{\ln (x)}{\sin (x)}$.
c.) $h(x)=\frac{2 x^{6}-x^{2}}{3 x^{4}}$.
3.) Find the derivative of the following functions.
a.) $f(x)=\left(23 x^{3}+\cos (2 x) \sin (x)\right.$.
b. $) \mathrm{g}(\mathrm{x})=\frac{\ln (2 x)+4 e^{x}}{x-\cos \left(4 x^{3}\right)}$.
c.) $h(x)=e^{2 x-5}\left(x^{3 / 2}-3 \ln \left(x^{3}\right)\right)-\cos (x)+344444455$.
4.) The population of buffalo at Shimizu Ranch is modeled by the function

$$
B(t)=(3 t-5) e^{t}+8
$$

where t is in units of years from now, and the population of buffalo, $\mathrm{B}(\mathrm{t})$, is in hundreds of buffalo. (For example, at $\mathbf{t}=\mathbf{0}$-i.e., right now-there are $\mathbf{3 0 0}$ buffalo. At $\mathrm{t}=\frac{1}{3}$-i.e., 4 months from now-there will be approximately ($8-2 \mathrm{e}^{1 / 3}$) 100 buffalo.)

What will the rate of change of the buffalo's population be, 4 years and 8 months from now?
5.) Let $f(x)=2 x^{2}$ and $g(x)=\frac{x}{\ln (x)}$.

Find the derivative of $g(f(x))$.

