True/False practice problems for Exam I

In the exam, you will get +2 for a correct response, and 0 for an incorrect response on a True/False question. You will get +1 for writing "I don't know."

Remember: In logic, "True" means always true. "False" means "not always true," meaning the statement may be false for some examples.

State whether the statement is true or false:
(a) If $\lim _{x \rightarrow a} f(x)$ exists, then $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ both exist.
(b) If $\lim _{x \rightarrow a} f(x)$ does not exist, then $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ do not exist.
(c) If $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ exist, then $\lim _{x \rightarrow a} f(x)$ exists.
(d) If $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ exist and if they agree, then $\lim _{x \rightarrow a} f(x)$ exists.
(e) If $f^{\prime}(a)=0$, then a is either a local maximum or a local minimum.
(f) If a is an inflection point of f, then $f^{\prime}(a)=0$.
(g) If a is an inflection point of f, then $f^{\prime \prime}(a)=0$.
(h) If a is a critical point of f, then $f^{\prime}(a)=0$.
(i) If a is a critical point of f, then $f^{\prime \prime}(a)=0$.
(j) If $\lim _{x \rightarrow a^{+}} f(x)=0$ and $\lim _{x \rightarrow a^{+}} g(x)=0$, and if f and g are differentiable, we can apply L'Hopital's Rule to compute $\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}$.
(k) If $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=\infty$, and if f and g are differentiable, we can apply L'Hopital's Rule to compute $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$.
(l) If $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=0$, and if f and g are differentiable, we can apply L'Hopital's Rule to compute $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$.
(m) If $\lim _{x \rightarrow a^{+}} f(x)=\infty$ and $\lim _{x \rightarrow a^{+}} g(x)=\infty$, and if f and g are differentiable, we can apply L'Hopital's Rule to compute $\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}$.
(n) When testing for absolute maxima and minima for f along an interval $[a, b]$: If f is differentiable, then one need only check the values of $f(x)$ when x is a critical point or when $x=a$ or when $x=b$.
(o) The second derivative test tells us (at least) that if $f^{\prime}(x)=0$ and $f^{\prime \prime}(x)<$ 0 , then x is an absolute maximum.
(p) The second derivative test tells us (at least) that if $f^{\prime}(x)=0$ and $f^{\prime \prime}(x)<$ 0 , then x is a local maximum.
(q) The function $f(x)=|x|$ has a derivative at $x=0$.
(r) The function $f(x)=|x|$ has a derivative at $x=1$.
(s) The function $f(x)=|x|$ has a derivative at $x=-1$.
(t) The function $f(x)=|x|$ has a derivative at every value of x except 0 .

True/False solutions

(a) If $\lim _{x \rightarrow a} f(x)$ exists, then $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ both exist. True.
(b) If $\lim _{x \rightarrow a} f(x)$ does not exist, then $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ do not exist. False. Both one-sided limits might exist, but the two one-sided limits will not be equal.
(c) If $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ exist, then $\lim _{x \rightarrow a} f(x)$ exists. False. Even if both one-sided limits exist, if they are not equal, the limit $\lim _{x \rightarrow a}$ does not exist.
(d) If $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ exist and if they agree, then $\lim _{x \rightarrow a} f(x)$ exists. True.
(e) If $f^{\prime}(a)=0$, then a is either a local maximum or a local minimum. False. Consider $f(x)=x^{3}$ with $a=0$.
(f) If a is an inflection point of f, then $f^{\prime}(a)=0$. False. Consider $f(x)=\tan (x)$ with $a=0$.
(g) If a is an inflection point of f, then $f^{\prime \prime}(a)=0$. True.
(h) If a is a critical point of f, then $f^{\prime}(a)=0$. True.
(i) If a is a critical point of f, then $f^{\prime \prime}(a)=0$. False. Consider $f(x)=x^{2}$.
(j) If $\lim _{x \rightarrow a^{+}} f(x)=0$ and $\lim _{x \rightarrow a^{+}} g(x)=0$, and if f and g are differentiable, we can apply L'Hopital's Rule to compute $\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}$. True.
(k) If $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=\infty$, and if f and g are differentiable, we can apply L'Hopital's Rule to compute $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$. False. Both limits must equal zero, or both limits must equal infinity, to apply the rule.
(l) If $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=0$, and if f and g are differentiable, we can apply L'Hopital's Rule to compute $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$. False. Both limits must equal zero, or both limits must equal infinity, to apply the rule.
(m) If $\lim _{x \rightarrow a^{+}} f(x)=\infty$ and $\lim _{x \rightarrow a^{+}} g(x)=\infty$, and if f and g are differentiable, we can apply L'Hopital's Rule to compute $\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}$. True.
(n) When testing for absolute maxima and minima for f along an interval $[a, b]$: If f is differentiable, then one need only check the values of $f(x)$ when x is a critical point or when $x=a$ or when $x=b$. True.
(o) The second derivative test tells us (at least) that if $f^{\prime}(x)=0$ and $f^{\prime \prime}(x)<$ 0 , then x is an absolute maximum. False.
(p) The second derivative test tells us (at least) that if $f^{\prime}(x)=0$ and $f^{\prime \prime}(x)<$ 0 , then x is a local maximum. True.
(q) The function $f(x)=|x|$ has a derivative at $x=0$. False. Writing the difference quotient at $x=0$, we see that $\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}=1$ while $\lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}=-1$. Thus the difference quotient does not have a limit as $h \rightarrow 0$, meaning f does not have a derivative at $x=0$.
(r) The function $f(x)=|x|$ has a derivative at $x=1$. True. The derivative is 1 .
(s) The function $f(x)=|x|$ has a derivative at $x=-1$. True. The derivative is $\mathbf{- 1}$.
(t) The function $f(x)=|x|$ has a derivative at every value of x except 0 . True. The derivative is 1 when x is positive, and -1 when x is negative.

