Related Rates and Implicit Differentiation Practice Problems for Exam I

1.2

The area of a square of edge length l is given by

$$
A=l^{2} .
$$

The square's area is changing with time. If at time t, the area is changing at 3 meters squared per second, how fast is the edge length changing? Does your answer depend on the edge length at time t ?

1.3

The area of a rectangle of width w and length l is given by

$$
A=w l .
$$

At time $t=5$ seconds, we are told that: $l=3$ and $w=1$, and that moreover, l is changing at a rate of 7 units per second and w is changing at a rate of 2 units per second. At what rate is the area changing at $t=5$ seconds?

1.4

The population of Calculus Town t years from now is modeled by the function

$$
P(t)=13 e^{A(t) t}
$$

where $A(t)$ is a function measuring affordability, and $P(t)$ is in units of persons. Moreover, based on recent trends, the affordability of the town is predicted to be decreasing; in fact, we are told that $A^{\prime}(1)=-3$. But we are told that the town will remain rather affordable a year from now, so that $A(1)=5$. Based on this model, at what rate will the population $P(t)$ be changing at $t=1$?

1.5

Using implicit differentiation, find the slope of the tangent line to a point (x, y) on the shape given by the equation

$$
e^{y} e^{x} y^{2}=x
$$

1.6

Consider the shape given by those points (x, y) satisfying

$$
x^{4}+y^{4}=17 .
$$

Find the slope of the tangent line to this shape at the point $(1,2)$.

Solutions: Related Rates and Implicit Differentiation

1.2

We write the area A and the edge length l as functions of time, so $A(t)=l(t)^{2}$. Take the derivative of both sides (using the chain rule on the right) to find that

$$
A^{\prime}(t)=2 l(t) l^{\prime}(t)
$$

In other words, if $A^{\prime}(t)=3$, we know that $3=2 l(t) l^{\prime}(t)$. So we conclude that $l^{\prime}(t)=\frac{3}{2 l(t)}$. In other words, the rate of change of the edge length l is given by $\frac{3}{2 l(t)}$. So yes, the answer does depend on $l(t)$.

1.3

We write $A(t)=w(t) l(t)$. Using the product rule, we find

$$
A^{\prime}(t)=w^{\prime}(t) l(t)+w(t) l^{\prime}(t)
$$

We are given that $l(5)=3, w(5)=1, l^{\prime}(5)=7, w^{\prime}(5)=2$. Hence

$$
A^{\prime}(t)=2 \cdot 3+1 \cdot 7=13
$$

1.4

Taking the derivative (using the chain rule), we find

$$
P^{\prime}(t)=13 e^{A(t) t} \cdot(A(t) t)^{\prime}
$$

Using the Leibniz rule on the last term, we find

$$
P^{\prime}(t)=13 e^{A(t) t} \cdot\left(A^{\prime}(t) t+A(t)\right) .
$$

We are given that $A(1)=5, A^{\prime}(1)=-3$, so:

$$
P^{\prime}(1)=13 e^{5 \cdot 1} \cdot(-3 \cdot 1+5)=2 \cdot 13 \cdot e^{5}=26 e^{5}
$$

So at $t=1$, the town's population will still be increasing, at a rate of $26 e^{5}$ people per year.

1.5

We find

$$
\begin{align*}
\frac{d}{d x}\left(e^{y} e^{x} y^{2}\right) & =\frac{d}{d x}(x) \tag{21}\\
\frac{d}{d x}\left(y^{2} e^{y} e^{x}\right) & =\frac{d}{d x}(x) \tag{22}\\
\left(y^{2} e^{y}\right)^{\prime} e^{x}+\left(y^{2} e^{y}\right)\left(e^{x}\right)^{\prime} & =(x)^{\prime} \tag{23}\\
\left(y^{2} e^{y}\right)^{\prime} e^{x}+\left(y^{2} e^{y}\right)\left(e^{x}\right)^{\prime} & =1 \tag{24}\\
\left(y^{2} e^{y}\right)^{\prime} e^{x}+\left(y^{2} e^{y}\right) e^{x} & =1 \tag{25}\\
\left(\left(y^{2}\right)^{\prime} e^{y}+y^{2}\left(e^{y}\right)^{\prime}\right) e^{x}+\left(y^{2} e^{y}\right) e^{x} & =1 \tag{26}\\
\left(2 y \cdot y^{\prime} \cdot e^{y}+y^{2} \cdot e^{y} \cdot y^{\prime}\right) e^{x}+\left(y^{2} e^{y}\right) e^{x} & =1 \tag{27}\\
y^{\prime}\left(2 y \cdot e^{y}+y^{2} \cdot e^{y}\right) e^{x}+\left(y^{2} e^{y}\right) e^{x} & =1 \tag{28}\\
y^{\prime}\left(2 y+y^{2}\right) e^{y} e^{x} & =1-y^{2} e^{y} e^{x} \tag{29}\\
y^{\prime} & =\frac{1-y^{2} e^{y} e^{x}}{\left(2 y+y^{2}\right) e^{y} e^{x}} \tag{30}
\end{align*}
$$

