What follows are practice problems from Sean Corrigan's class. I would expect you to be able to do every problem except 13(f).

1. Fill in the blanks in the following definition: We say $\lim _{x \rightarrow c} f(x)=L$ if for every \qquad , there exists \qquad such that
if \qquad , then \qquad .

Use this definition to prove that

$$
\lim _{x \rightarrow 2}(6 x-1)=11
$$

2. Let $f(x)$ be the piecewise-defined function

$$
f(x)= \begin{cases}x^{4}+1 & x \text { is rational } \\ 3 x^{2}+1 & x \text { is irrational }\end{cases}
$$

Use the Sandwich Theorem to show that $\lim _{x \rightarrow 0} f(x)=1$.
3. Use the Sandwich Theorem to show that $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0$.
4. For the function $f(x)=\frac{x^{2}-3 x-10}{x^{2}-4 x-12}$, compute the following limits.
(a) $\lim _{x \rightarrow 5} f(x)$
(b) $\lim _{x \rightarrow-2} f(x)$
(c) $\lim _{x \rightarrow 6} f(x)$
5. (a) State the formal definition of derivative: for a function $f(x)$, we define

$$
f^{\prime}(x)=
$$

(b) Use the formal definition of derivative to find $f^{\prime}(x)$ when $f(x)=\frac{1}{x}$.
6. Use the Intermediate Value Theorem and the Mean Value Theorem to show that the equation $2 x+\cos (x)=0$ has exactly one solution.
7. Use the chain rule to find the derivative of the function $f(x)=\tan \left(\sin \left(x^{2}\right)\right)$.
8. Compute $\frac{d P}{d x}$ for the following functions $P(x)$.
(a) $P(x)=\sec \left(x^{2}\right) \cdot \tan \left(x^{3}\right)$
(b) $P(x)=\left(x^{-3}+x^{-1}\right) \cdot\left(7 x^{3 / 2}-5 x+9\right)$
(c) $P(x)=\sqrt{x} \cdot \cos \left(x^{2}+1\right)$
9. Compute $\frac{d Q}{d x}$ for the following functions $Q(x)$.
(a) $Q(x)=\frac{\tan (x)}{4^{x}}$
(b) $Q(x)=\frac{\arctan \left(e^{x}\right)}{x}$
10. Pictured here are the graphs of two functions f and g.

For the functions $(f \cdot g)(x)=f(x) \cdot g(x)$ and $(f \circ g)(x)=f(g(x))$, find the following derivatives.
(a) $(f \cdot g)^{\prime}(1)$
(b) $(f \cdot g)^{\prime}(-1)$
(c) $(f \circ g)^{\prime}(1)$
11. For the one-to-one function f whose graph is pictured below, compute $\left(f^{-1}\right)^{\prime}(3)$.

12. A particle is moving in a straight line, and its distance from the starting point is given by the function $s(t)=t^{3}+t^{2}$, where s is in meters and t is the time in seconds.
(a) Find the average velocity of the particle on the interval [1,2]. Give units.
(b) Find the instantaneous velocity of the particle at the time $t=1$. Give units.
13. Let $f(x)=x^{3}-5 x+2$.
(a) Find the average rate of change of f on the interval $[0,2]$.
(b) Find the equation of the secant line through the graph of f on the interval $[0,2]$.
(c) Find the instantaneous rate of change of f at $x=0$.
(d) Find the equation of the tangent line to the graph of f at $x=0$.
(e) Use the equation of the tangent line to approximate $f(.1)$.
(f) Starting with the guess $x=.2$, use Newton's Method to find a solution to the equation $f(x)=0$ near $x=.2$.
14. A rectangle has length that is increasing at a rate of $2 \mathrm{~m} / \mathrm{s}$ and width that is decreasing at a rate of $1 \mathrm{~m} / \mathrm{s}$. Find the rate of change of the area when $l=10 \mathrm{~m}$ and $w=12 \mathrm{~m}$. Give the units for the rate of change.
15. The radius of a sphere is increasing at a rate of $5 \mathrm{in} / \mathrm{s}$. How fast is the surface area increasing when the radius of the sphere is 20 in ?
16. A conical water tank, with base radius 2 m and height 6 m , is being filled at a rate of 1 $\mathrm{m}^{3} / \mathrm{min}$. Find the rate at which the water level is rising when the water is 3 m deep.
17. Find the inflection points for the function $f(x)=\arctan \left(x^{2}\right)$. Give both the x and y values.
18. A cylindrical can has a volume of $16 \pi \mathrm{~cm}^{3}$. Find the dimensions of the can (radius and height) that minimize the amount of material used.
19. A box with square base and open top is to be constructed from two kinds of material - the material for the bottom of the box costs $\$ 4 / \mathrm{cm}^{2}$ and the material for the sides costs $\$ 7.29 / \mathrm{cm}^{2}$. If the box is going to have volume $25 \mathrm{~cm}^{3}$, find the dimensions that minimize the cost of production.
20. The "kampyle of Eudoxus" is the curve

$$
y^{2}=5 x^{4}-x^{2}
$$

The point $(-1,2)$ is on the curve. Give the equation of the tangent line to the curve at that point.

