
Lecture 33

Limits at Œ

33.1 Examples
Exercise 33.1.1. For each of the following functions, determine whether f(x) “ap-
proaches” a particular value as x becomes larger and larger. Drawing a rough sketch
of the graph may be helpful.

(i) f(x) = 1
x .

(ii) f(x) = 2 + 1
x .

(iii) f(x) = x.

(iv) f(x) = sin x.

(v) f(x) = sin x
x .

(vi) f(x) = x sin x.

Here are the solutions.

(i) f(x) = 1
x .
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We see in this example that as x becomes bigger and bigger, 1/x becomes
smaller and smaller; in fact, we can make 1/x as close to 0 as we like, so long
as x is large enough. We write

lim
xæŒ

1
x

= 0.

(ii) f(x) = 2 + 1
x .

We see in this example that as x becomes bigger and bigger, 2 + 1/x becomes
closer and closer to 2 (the height 2 is drawn in dashes above). In fact, we can
make 2 + 1/x as close to 2 as we like, so long as x is large enough. We write

lim
xæŒ

2 + 1
x

= 0.

(iii) f(x) = x.

In this example, we see that f(x) = x becomes bigger and bigger as x does. In
fact, we can say the following: If we want f to be larger than some number T ,
we just need to ensure that x is larger than T . We say

lim
xæŒ

x = Œ.



33.1. EXAMPLES 49

(iv) f(x) = sin x.
This is a tricky example, but we see that no matter how large x is, f(x) could
be any number between -1 and 1. And there is no big number that guarantees
that “so long as x is bigger than this big number, f(x) will be close to some
limiting value.” Thus, we say

lim
xæŒ

sin(x) does not exist .

(v) f(x) = sin x
x .

This is di�erent. f still seems to oscillate, but the f is approaching values
closer and closer to 0 as x grows. Indeed, we can guarantee f to be ‘-close to
0 so long as x is large enough. We say

lim
xæŒ

sin x

x
= 0.

(vi) f(x) = x sin x.
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In this example, f(x) displays interesting behavior as x grows larger and larger.
f oscillates, and more wildly. Importantly, f does not approach infinity as x
grows. Here is why: To approach infinity, we must guarantee that for any T ,
f is larger than T so long as x is large enough. But regardless of how big we
require x to be, there is a possibility that f(x) is less than T—in fact, f(x)
could even be negative!

So we say

lim
xæŒ

x sin(x) does not exist.

33.2 Definition of limits at infinity

We’ve seen some examples of limits at infinity. Here is a definition:

Definition 33.2.1. We say that f has a limit at Œ if there exists a number L such
that for every real number ‘, we can guarantee that “if x is big enough, f(x) is within
‘ of L.”

More precisely, we say that f has a limit at Œ if there exists a number L such
that for every real number ‘, we can find a number F so that1

x > F =∆ |f(x) ≠ L| < ‘. (33.2.1)

(Remember that “ =∆ ” means “implies.”)
We call L the limit of f as x approaches Œ, and we write

lim
xæŒ

f(x) = L.

Graphically, (33.2.1) means that so long as our x coordinate is larger than F , our

1Here, x > F is the mathematical translation of “x is big enough.”
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graph of f is within a strip of height 2‘ centered at L:

F

L + ‘

L ≠ ‘

You will rarely have to use this definition, but you should know that the definition
above provides the mathematical precision necessary to prove things like limit laws
for infinity (see next section).

We can also talk about limits as x approaches ≠Œ—to find such limits is to
ask whether f approaches a particular number as x becomes more and more negative.
We write such a limit as

lim
xæ≠Œ

f(x).

Remark 33.2.2 (Are there no “one-sided” limits at infinity?). You may have noticed
we have not dicussed one-sided limits when we approach Œ or ≠Œ. A better way
to think about this is that all limits at Œ are in some sense one-sided, in that

lim
xæŒ

f = lim
xæŒ≠

f.

Indeed, there is no sense in which x can approach Œ “from the right.” Likewise, you
should think of a limit at ≠Œ as one-sided, too:

lim
xæŒ

f = lim
xæŒ+

.

Example 33.2.3. This is an important example you need to know. Look at
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the graph of ex:

≠2 ≠1 0 1 2 3 4 5
≠100

≠50

0

50

100

As x approaches ≠Œ (i.e., as x goes to the left), the graph approaches the x-axis.
So

lim
xæ≠Œ

ex = 0.

As x approaches Œ (i.e., as x goes to the right), the function grows larger and larger,
without bound. So

lim
xæŒ

ex = Œ.

33.3 Practice with limit laws for infinities
We will be vague about this, but here it is:

Limit laws work for limits involving Œú

with an asterisk: ú so long as all terms are defined.

Example 33.3.1. Compute
lim

xæŒ
(x ≠ x2).

We can try using the addition law. If we do, we find

lim
xæŒ

(x ≠ x2) = = lim
xæŒ

x ≠ lim
xæŒ

x2 (33.3.1)

= Œ ≠ Œ !!!!!!! (33.3.2)

The big exclamation marks are a warning: The expression “Œ≠Œ” is not defined.
This means that the limit law gives us no information (just like the quotient law is
inapplicable when the denominator has limit 0). So we tried, and we failed. That’s
okay.

Let’s try something else: The product law. The key observation is to see that

(x ≠ x2) = x(1 ≠ x).
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Then we have:

lim
xæŒ

(x ≠ x2) = lim
xæŒ

x(1 ≠ x) (33.3.3)

= lim
xæŒ

x · lim
xæŒ

(1 ≠ x) (33.3.4)

= Œ · lim
xæŒ

(1 ≠ x) (33.3.5)

= Œ · (1 ≠ Œ) (33.3.6)
= Œ · (≠Œ) (33.3.7)
= ≠Œ. (33.3.8)

Example 33.3.2. Compute

lim
xæŒ

(x ≠ x2 + 10).

We can try using the addition law. If we do, we find

lim
xæŒ

(x ≠ x2 + 10) = = lim
xæŒ

(x ≠ x2) + lim
xæŒ

10 (33.3.9)

= ( lim
xæŒ

(x ≠ x2)) + 10. (33.3.10)

But we know this limit in the parentheses! We saw above that the limit was ≠Œ, so
we obtain

lim
xæŒ

(x ≠ x2 + 10) = ≠Œ + 10 = ≠Œ.

33.4 Limits at ±Œ for polynomials
In fact, repeating the factoring trick and the addition law, you can conclude the
following: You can compute limits at Œ for polynomials by looking at the
highest degree term, and these limits will always be ±Œ. For example,

lim
xæŒ

3x5 + x4 ≠ 3x2 = lim
xæŒ

3x5 (33.4.1)

= 3( lim
xæŒ

x) · ( lim
xæŒ

x) · ( lim
xæŒ

x) · ( lim
xæŒ

x) · ( lim
xæŒ

x) (33.4.2)

= 3Œ · Œ · Œ · Œ · Œ (33.4.3)
= 3Œ (33.4.4)
= Œ. (33.4.5)

The first equality is using the bolded principle above (you need only look at the
highest degree term of the polynomial when computing limits at ±Œ). The next
line is using the product rule a lot.
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As another example,

lim
xæ≠Œ

2x6 + x5 ≠ 3x = lim
xæ≠Œ

2x6 (33.4.6)

= 2( lim
xæ≠Œ

x)6 (33.4.7)

= 2(≠Œ)6 (33.4.8)
= 2Œ (33.4.9)
= Œ. (33.4.10)

Again, in the first line, I am using that the limit at ±Œ of a polynomial is equal to
the limit of the highest degree term. Note that I got lazy and wrote (≠Œ)6 rather
than (≠Œ) · (≠Œ) · (≠Œ) · (≠Œ) · (≠Œ).

Here is one more examples for your edification:

lim
xæ≠Œ

≠4x3 + x2 ≠ x = lim
xæ≠Œ

≠4x3 (33.4.11)

= ≠4 · lim
xæ≠Œ

x3 (33.4.12)

= ≠4 · (≠Œ)3 (33.4.13)
= ≠4 · (≠Œ) (33.4.14)
= Œ. (33.4.15)

33.5 Limits at ±Œ for rational functions
Example 33.5.1. Let’s compute

lim
xæŒ

x3 + x + 1
3x3 ≠ 3x2 .

Let’s try using the quotient law. We get

lim
xæŒ

x3 + x + 1
3x3 ≠ 3x2 . = limxæŒ x3 + x + 1

limxæŒ 3x3 ≠ 3x2 (33.5.1)

= Œ
Œ . (33.5.2)

This is undefined! So we can’t use the quotient law—at least in the way we’ve used
it. We failed, like we’ve failed before. That’s okay. We keep trying.

Here’s a wonderful trick: Let’s divide top and bottom of the function in question
by x3. Then we obtain:

lim
xæŒ

x3

x3 + x
x3 + 1

x3

3x3

x3 ≠ 3x2

x3
.
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Let’s follow this til the end:

lim
xæŒ

x3 + x + 1
3x3 ≠ 3x2 = lim

xæŒ

x3

x3 + x
x3 + 1

x3

3x3

x3 ≠ 3x2

x3
(33.5.3)

=
limxæŒ

x3

x3 + x
x3 + 1

x3

limxæŒ 3x3

x3 ≠ 3x2

x3
(33.5.4)

=
limxæŒ 1 + 1

x2 + 1
x3

limxæŒ 3 ≠ 3 1
x

(33.5.5)

=
limxæŒ 1 + limxæŒ

1
x2 + limxæŒ

1
x3

limxæŒ 3 ≠ limxæŒ 3 1
x

(33.5.6)

= 1 + 0 + 0
3 ≠ 3 · 0 (33.5.7)

= 1
3 . (33.5.8)

The first line was the “divide top and bottom by x3” trick, the next was the quotient
rule, then we did some algebra. We obtain (33.5.6) using the addition rule, and then
we obtain (33.5.6) by evaluating the limits we already knew how to evaluate. The
final line is just arithmetic.

Here is the general trick: When computing limits of rational functions at
±Œ, divide the top and bottom by the highest power of x you see in the
denominator.

Example 33.5.2. Here is the work showing how to compute a few limits:

lim
xæŒ

x2 + x + 1
3x3 ≠ 3x2 = lim

xæŒ

1
x + 1

x2 + 1
x3

3 ≠ 3 1
x

(33.5.9)

=
limxæŒ

1
x + 1

x2 + 1
x3

limxæŒ 3 ≠ 3 1
x

(33.5.10)

= 0 + 0 + 0
3 ≠ 0 (33.5.11)

= 0. (33.5.12)
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lim
xæŒ

x4 + x + 1
3x2 ≠ 3x

= lim
xæŒ

x2 + 1
x + 1

x2

3 ≠ 3 1
x

(33.5.13)

=
limxæŒ x2 + 1

x + 1
x2

limxæŒ 3 ≠ 3 1
x

(33.5.14)

= limxæŒ x2 + 0 + 0
3 ≠ 0 (33.5.15)

= lim
xæŒ

x2

3 (33.5.16)

= 1
3 lim

xæŒ
x2 (33.5.17)

= 1
3 · Œ (33.5.18)

= Œ. (33.5.19)

The reason this trick works: When you divide the denominator by the highest
power of x you see there, you’ll always end up with a denominator that looks like

some number + a
1
x

+ b
1
x2 + . . . (some coe�cient) 1

xk
.

But if we take the limit of this expression as x æ ±Œ, we get the same “some
number,” because all other terms go to zero. In particular, the denominator is an
actual number, so we’ll never run into a quotient that’s undefined.

33.6 Asymptotes

For next lecture, I am going to have you practice finding horizontal and vertical
asymptotes. The two things you’ll be learning are (i) asymptotes, and (ii) computing
limits using 0± notation—this is a way to improve upon the quotient rule for limits.

First, asymptotes. Here is a vague definition:

Definition 33.6.1. As asymptote of a function is a line that approximates the func-
tion in some limit.
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Example 33.6.2. Below is the graph of the function f(x) = 2x2

x2≠1 :

≠15 ≠10 ≠5 0 5 10 15

≠10

0

10

I have drawn three dashed lines. Two of them are vertical, at x = 1 and x = ≠1.
The other is horizontal, at height y = 2.

As you can see, as x approaches 1 or -1, the graph of the function begins to look
more and more vertical, and the graph becomes near and nearer to the vertical lines
. These two vertical lines are called vertical asymptotes. They are the lines x = 1
and x = ≠1.

You can also see that as x approaches Œ, the graph of f becomes closer and
closer to the dashed horizontal line (of height 2). We say that the line y = 2 is a
horizontal asymptote of f .

As it happens, f approaches the same line as x goes to ≠Œ. (This does not
need to happen for y = 2 to be considered a horizontal asymptote; the graph might
approach di�erent horizontal asymptotes at Œ and at ≠Œ.)

From the way I’ve described things, you’ve probably noted the following:

1. We find vertical asymptotes of f by seeing whether limxæa+ f or limxæa≠ equals
±Œ at some a. If this limit does equal ±Œ at a, then the line x = a is a vertical
asymptote of f .

2. We find horizontal asymptotes of f by computing limxæŒ f(x) and limxæ≠Œ f(x).
For example, if limxæŒ f(x) = B, then f has a horizontal asymptote of height
B, because f approaches the horizontal line y = B as x increases. And if
limxæ≠Œ f(x) = C, then f also has a horizontal asymptote of height C, be-
cause f approaches the horizontal line y = C as x approaches ≠Œ.
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33.6.1 The 0+ and 0≠ notation (improving the quotient rule)
There is one more incredibly useful trick for knowing whether a limit is ±Œ. Let
me state the fact below as a Lemma; we’ll improve upon it shortly:

Lemma 33.6.3. Suppose f is a quotient of two functions, so that

f(x) = g(x)
h(x) .

Suppose that

(i) limxæa+ g(x) is positive 2, and

(ii) h(x) approaches 0 from the right as x approaches a from the right.

Then
lim

xæa+
f(x) = Œ.

Example 33.6.4. Let us study limxæ3+
1

x≠3 . We see that as x approaches 3 from
the right (meaning x is always larger than 3, but approaching 3), the expression x≠3
is always positive, but is approaching 0. In other words, x ≠ 3 is approaching 0 from
the right. Thus the lemma applies, and we conclude

lim
xæ3+

1
x ≠ 3 = Œ.

(We already knew this fact, but we are formalizing it using the Lemma/trick above.)

Of course, if the denominator approaches 0 from the left, then the limit is no
longer Œ, but is ≠Œ. So the lemma has di�erent versions for how x approaches a,
and how we approach 0 in the denominator. But more importantly, we are very lazy,
and we don’t want to have to say the words “the denominator approaches zero from
the right/left” all the time.

So we will have a shorthand notation (Notation 33.6.5)—and it can cause confu-
sion, so be careful. But because of this shorthand notation, the Lemma above will
become compressed into some simple equalities, which you’ll find in Lemma 33.6.8
below. It’s these simple equalities that you’ll actually be using when writing out
work quickly.

2In particular, it is not equal to zero; but we do allow for this limit to be Œ
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Notation 33.6.5 (0±). Let h be a function, and suppose that as x approaches a
from the right, h(x) approaches zero from the right. Then we will write

lim
xæa+

h(x) = 0+.

Likewise, if h(x) approaches zero from the left, we will write

lim
xæa+

h(x) = 0≠.

We use the same notation when we have x approach a from the left, too. So we can
write things like

lim
xæa≠

h(x) = 0+ or lim
xæa≠

h(x) = 0≠.

Warning 33.6.6. Unlike ±Œ, I will discourage you from thinking of 0+ and 0≠

as numbers. You should think of 0+ as shorthand for “approaching zero from the
right,” and the equality symbol of limxæa≠ h(x) = 0+ not as an equality of numbers,
but a shorthand for saying “0+ is the way that this limit looks.”

Ah, but there are always caveats. See the footnote below.3

Example 33.6.7. The following are all correct uses of this notation:

1. limxæ3+
1

x≠3 = 1
0+ .

2. limxæ3≠
1

x≠3 = 1
0≠ .

3. limxæ3+
1

3≠x = 1
0≠ .

4. limxæ3≠
1

3≠x = 1
0+ .

Here is the condensed version of Lemma 33.6.3 above, and of its relatives:

Lemma 33.6.8. Let A be positive. (A can be a number, or it can equal Œ.) Then

A

0+ = Œ and A

0≠ = ≠Œ.

3There is a system of numbers for which you can think of both ±Œ and 0± as legitimate
“numbers.” But this can be a little confusing at first glance, and a discussion about this can take
us very, very far astray, so we won’t be exploring this avenue in this class. But I hope you see that
a door is cracked open: A door to a place where you can explore new notions of “number” and test
your imagination against mathematical truths.
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If instead A is negative, then
A

0+ = ≠Œ, and A

0≠ = Œ.

(End of Lemma.)
Warning 33.6.9. Expressions like A

0+ only arise when computing one-sided limits.
I warn you again to only use the above lemma when you are computing certain one-
sided limits, and to not think of the equalities above as equalities of numbers, but a
shorthand, lazy way of saying (for example) “If the denominator approaches 0 from
the right, and if A is positive, then the limit is Œ.”
Remark 33.6.10 (A helpful way to think about Lemma 33.6.8). Usually, we can’t
compute limits when the denominator equals zero. Think of Lemma 33.6.8 as a way
of improving the quotient rule: So long as we are computing one-sided limits, and
so long as we do not get a result that looks like “0/0,” we can actually compute
limits even when the denominator approaches zero (so long as the denominator only
approaches zero from one side).
Example 33.6.11. Here are examples of how you can use the above notation to
write out the work to compute some limits:

(i)

lim
xæ3+

x

x ≠ 3 = limxæ3+ x

limxæ3+ x ≠ 3 (33.6.1)

= 3
limxæ3+ x ≠ 3 (33.6.2)

= 3
0+ (33.6.3)

= Œ. (33.6.4)
I used the “dividing by 0+” notation from Lemma 33.6.8 in the last two equal-
ities. Everything else is a straightforward application of limit laws.

(ii)

lim
xæ3≠

x

x ≠ 3 = limxæ3≠ x

limxæ3≠ x ≠ 3 (33.6.5)

= 3
limxæ3≠ x ≠ 3 (33.6.6)

= 3
0≠ (33.6.7)

= ≠Œ. (33.6.8)
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I used the “dividing by 0+” notation from Lemma 33.6.8 in the last two equal-
ities. Everything else is a straightforward application of limit laws.

(iii)

lim
xæ3≠

x2

9 ≠ x2 = limxæ3≠ x2

limxæ3≠ 9 ≠ x2 (33.6.9)

= 9
limxæ3≠ 9 ≠ x2 (33.6.10)

= 9
0+ (33.6.11)

= Œ. (33.6.12)

The important thing to note here is the step from (33.6.10) to (33.6.11). Though
x is approaching 3 from the left, 9 ≠ x2 is approaching zero from the right; this
is because as x approaches 3 from the left, x2 is always less than 9; so 9 ≠ x2 is
always positive. In contrast, we have:

lim
xæ3+

x2

9 ≠ x2 = limxæ3+ x2

limxæ3+ 9 ≠ x2 (33.6.13)

= 9
limxæ3+ 9 ≠ x2 (33.6.14)

= 9
0≠ (33.6.15)

= ≠Œ. (33.6.16)
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Putting things together Now we can put the two new ideas of this packet together.
Example 33.6.12. Find all vertical and horizontal asymptotes (if any) of

f(x) = 4x3 + 3x ≠ 2
3x2 ≠ 27

(i) Let’s first begin to look for horizontal asymptotes. Remember, this means looking
for limits as x approaches ±Œ. And the trick for this for rational functions is to
divide the numerator and denominator by the highest power in the denominator. So
let’s begin our computation doing that, and go on:

lim
xæŒ

4x3 + 3x ≠ 2
3x2 ≠ 27 = lim

xæŒ

4x3 + 3x ≠ 2
3x2 ≠ 27 ·

1
x2
1

x2
(33.6.17)

= lim
xæŒ

4x + 3 1
x ≠ 2 1

x2

3 ≠ 27
x2

(33.6.18)

=
limxæŒ 4x + 3 1

x ≠ 2 1
x2

limxæŒ 3 ≠ 27
x2

(33.6.19)

=
limxæŒ 4x + 3 1

x ≠ 2 1
x2

3 ≠ 0 (33.6.20)

=
limxæŒ 4x + 3 1

x ≠ 2 1
x2

3 (33.6.21)

=
limxæŒ 4x + limxæŒ 3 1

x ≠ limxæŒ 2 1
x2

3 (33.6.22)

= Œ + 0 ≠ 0
3 (33.6.23)

= Œ. (33.6.24)

Because this limit is not a real number, there is no horizontal asymptote that f
approaches as x goes to Œ.

An almost identical computation will show that limxæ≠Œ f(x) = ≠Œ, so that
there is no horizontal asymptote that f approaches as x goes to ≠Œ, either. In sum,
there are no horizontal asymptotes.

(ii) Finally, let’s check for vertical asymptotes. This has to do with checking
when the denominator might limit to zero. So we must find when the expression

3x2 ≠ 27

could equal zero. This happens when x2 = 9, meaning we must study the limits as
x approahces ±3. All we need to check is, for each of these values, whether either of
the one-sided limits approaches ±Œ.
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So we must compute

lim
xæ3+

4x3 + 3x ≠ 2
3x2 ≠ 27 . (33.6.25)

The numerator becomes

4(3)3 + 3 · 3 ≠ 2 = 4 · 27 ≠ 9 ≠ 2 = 108 ≠ 9 ≠ 2 = 97.

On the other hand, the denominator approaches 0 from the right as x approaches 3
from the right. So we have

lim
xæ3+

4x3 + 3x ≠ 2
3x2 ≠ 27 = 97

0+ = Œ.

So we have found a vertical asymptote at x = 3. (At this point, we are happy with
x = 3, and we don’t need to check the lefthand limit at 3.)

Let’s make sure that we have a vertical asymptote at x = ≠3. For example, you
will find

lim
xæ≠3+

4x3 + 3x ≠ 2
3x2 ≠ 27 = some non-zero number

0≠ = ≠Œ,

and
lim

xæ≠3≠

4x3 + 3x ≠ 2
3x2 ≠ 27 = some non-zero number

0+ = Œ.

Computing either of these one-sided limits shows that there is a vertical asymptote
at x = ≠3.

To summarize: f(x) has no horizontal asymptotes, but has two vertical
asymptotes at x = 3 and x = ≠3.

In case you want to check your answer, here is a graph of the function:

≠20 ≠10 0 10 20

≠20

≠10

0

10

20
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33.7 For next time
For next lecture, I expect you to be able to find the vertical and horizontal asymptotes
for the following functions:

(a) f(x) = 1
x≠4

(b) f(x) = x2

x2≠9

(c) f(x) = x3

x2≠9


