
Lecture 31

Continuity, intermediate value

theorem, and puncture law

31.1 More on continuity

You have entered the journey of mathematical maturity that everybody has to go
through: You’re being given abstract definitions, but you don’t still understand what
they mean in concrete situations, nor why they’re useful.

31.2 Practice with the straightforward limit laws

Here are some limit laws we didn’t have time to practice last time. Get in your
groups and try them out.

Exercise 31.2.1. Using the limit laws, convince yourself that if h(x) = x2, then

lim
xæa

h(x) = h(a).

(Hint: Use the functions f(x) = x and g(x) = x, along with the product law.)

Exercise 31.2.2. Using the limit laws, show that limits subtract.
More precisely, if limxæa f(x) and limxæa g(x) exist, then so does limxæa (f(x) ≠ g(x)).

Moreover,
lim
xæa

(f(x) ≠ g(x)) =
3

lim
xæa

f(x)
4

≠
3

lim
xæa

g(x)
4

(Hint: Use the fact that limits scale, taking your scaling constant to be m = ≠1,
and use the fact that limits add.)
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Exercise 31.2.3. Use the limit laws to compute

lim
xæ1

A
x2 + 3

x

B

.

What goes wrong when you try to compute the limit as x æ 0?

31.3 Composition law

There is another powerful way to make new functions out of old: Composition.
Limits respect composition, too, so long as the outermost function is continuous at
the limit of the innermost function:

Composition law. Let g(x) and f(x) be functions, and suppose you know that
f(x) is continuous at limxæa g(x). Then

lim
xæa

f(g(x)) = f(lim
xæa

g(x)).

Informally, this means you can “move the limit inside” of f so long as f is continuous
where it counts.

Exercise 31.3.1. Using the composition law, and your knowledge that f(x) = x2 is
continuous at every point1, compute

lim
xæ3

f(g(x))

if g is a function for which limxæ3 g(x) = fi.

Warning 31.3.2. To use the composition law, the “outermost” function needs to be
continuous where it counts. (Re-read the composition law if this wasn’t clear when
you first read it!)

31.4 One-sided limits

Sometimes, a function approaches a value from the right; sometimes, the function
approaches a value from the left. These values might be di�erent!

1
You proved this in Exercise 31.2.1!
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Definition 31.4.1 (One-sided limits). If f(x) wants to converge to a value as x
approaches a from the right, we call this value the righthand limit of f(x) at a, and
we denote this value by

lim
xæa+

f(x).

(Note the plus sign on the a.)
If f(x) wants to converge to a value as x approaches a from the left, we call this

value the lefthand limit of f(x) at a, and we denote this value by

lim
xæa≠

f(x).

(Note the minus sign on the a.)
A lefthand limit or a righthand limit is called a one-sided limit.

Warning 31.4.2. Just like limits, a one-sided limit may not exist!

Exercise 31.4.3. Below is the graph of a function f(x).

≠3 ≠2 ≠1 0 1 2 3

≠4

≠2

0

2

4

Based on the graph, give your best guest for the following one-sided limits.

(a) limxæ≠2≠ f(x).

(b) limxæ≠2+ f(x).

(c) limxæ1+ f(x).

(d) limxæ1≠ f(x).
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Exercise 31.4.4. Consider the function

f(x) =

Y
__]

__[

0 x > 0 and x is irrational
1 x > 0 and x is rational
13 x < 0.

Tell me whether limxæ0+ f(x) and limxæ0≠ f(x) exist, and if they exist, what their
values are.

31.5 Using one-sided limits

Here is our first theorem. A theorem is a true statement that requires an involved
proof, and the true statement is so useful that we should2 know it for future use.

Theorem 31.5.1. The following statements are equivalent:

1. f(x) has a limit at a.

2. Both limxæa+ f(x) and limxæa≠ f(x) exist, and the one-sided limits agree.

Moreover, in this situation, we can conclude that

lim
xæa

f(x) = lim
xæa+

f(x) = lim
xæa≠

f(x).

Remark 31.5.2. The term “equivalent” has a precise meaning here. It means that
“if the first statement is true, then the second statement true,” and that “if the
second statement is true, then the first statement is true.”

In other words, if f has a limit at a, then it has both one-sided limits there, and
they agree. Conversely, if f has both one-sided limits at a and they agree, then f
has a limit at a.

Example 31.5.3. Somebody tells you the following information:

lim
xæ1+

f(x) = 3 and lim
xæ1≠

f(x) = 10.

Then you know that limxæ1 f(x) does not exist, because the two one-sided limits do
not agree.

2
That means you’ll be tested on it!
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Example 31.5.4. Somebody tells you the following information:

lim
xæ2+

f(x) = 10 and lim
xæ2≠

f(x) = 10.

Then you know that f(x) does have a limit at 2, because the two one-sided limits
agree (that is, they have the same value). Moreover, you can conclude that

lim
xæ2

f(x) = 10.

31.6 Summary of straightforward limit laws

Limits of constants. If f(x) is a constant function3 with value C, then

lim
xæa

f(x) = C

regardless of a.
Limits of x. For the function f(x) = x, we have that

lim
xæa

f(x) = a.

Warning 31.6.1. In the following limit laws, you must already know that all the
limits on the righthand side of the equality exist before being able to conclude the
existence of, and compute, the limit on the lefthand side.

Limits scale.

lim
xæa

(m · f(x)) = m ·
3

lim
xæa

f(x)
4

Limits add.

lim
xæa

(f(x) + g(x)) =
3

lim
xæa

f(x)
4

+
3

lim
xæa

g(x)
4

Limits multiply.

lim
xæa

(f(x) · g(x)) =
3

lim
xæa

f(x)
4

·
3

lim
xæa

g(x)
4

Limits divide.

lim
xæa

A
f(x)
g(x)

B

= limxæa f(x)
limxæa g(x)

so long as limxæa g(x) ”= 0.
3
This means f(x) = C for some number C. Put another way, the graph of f(x) is just a flat,

horizontal line.
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31.7 Continuity

Definition 31.7.1. A function f(x) is called continuous if it is continuous at every
point that f(x) is defined.

Let me give the following non-mathematical, but very helpful, intuition:
Intuition: “A continuous function is one for which you can draw the graph of

the function without ever having to lift your pencil from the paper.”

Warning 31.7.2. This intuition fails in small ways. For example, suppose that

f(x) = 1
(x + 1)(x ≠ 1) .

Here is the graph of f(x):

≠3 ≠2 ≠1 0 1 2 3
≠10

≠5

0

5

10

You can see that f is not defined at x = 1 and x = ≠1. So there is no way that
you can draw the whole graph without lifting your pencil. But f is still a continuous
function, because the value of f agrees with the limit of f at every point f is defined.

Regardless, “never have to lift your pencil” is a useful way to think about what
continuity looks like. This agrees with another intuition: A continuous function has
no “sudden jumps.”

Example 31.7.3. As it turns out, almost every function with a “formula” that you
know is continuous. Here is a list of some examples of continuous functions:

1. f(x) = 10 (and all other constant functions)
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2. f(x) = x (and all other linear functions)

3. f(x) = 3x3 + 4x2 + 9 (and all other polynomials—you can actually prove this
based on the basic limit laws from last lecture)

4. f(x) = 3x2+1
x≠3 (and all other functions that are quotients of polynomials—you

can actually prove this based on the basic limit laws from last lecture)

5. f(x) = |x| (I bet you can prove this function is continuous!)

6. f(x) = sin(x) (and all other trig functions)

7. f(x) =
Ô

x

8. f(x) = xp, for any real number p. (You should be familiar with the special
cases when p is a negative integer like p = ≠1 or p = ≠2, and when p is a
fraction like p = 1/3 or p = 2/3.)

9. f(x) = ex

10. f(x) = ln(x)

The continuity of the last five examples require some proofs that we won’t go over
in this class.

From now on, you may use—and are expected to know—that all the

functions above are continuous.

Example 31.7.4. You have now been told that x ‘æ x1/n is continuous. We can use
the composition law to deduce the following Root Law: The root of the limit is the
limit of the root.

That is, prove that if limxæa f(x) exists,

lim
xæa

n
Ò

f(x) = n

Ú
lim
xæa

f(x).

Here is the proof. Let h(x) = x1/n. Then because h(x) is a continuous function,
so we can use the composition law to conclude that

lim
xæa

h(f(x)) = h(lim
xæa

f(x)). (31.7.1)

(Line (31.7.1) is where we are using the composition law.) Now let’s just plug in
what h(x) is to simplify both sides:

lim
xæa

h(f(x)) = lim
xæa

(f(x))1/n , h(lim
xæa

f(x)) =
3

lim
xæa

f(x)
41/n

. (31.7.2)
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Stringing (31.7.1) and (31.7.2) together, we find:

lim
xæa

(f(x)1/n) =
3

lim
xæa

f(x)
41/n

. (31.7.3)

And now let’s just remember that raising something to the 1/n power is the same
thing as taking the nth root. So (31.7.3) becomes

lim
xæa

n
Ò

f(x) = n

Ú
lim
xæa

f(x).

And we’re done!

Warning 31.7.5. The root law only makes sense when taking nth roots makes
sense. For example, if n is even, then the law only makes sense if limxæa f(x) is not
negative.

Example 31.7.6. You have now been told that x ‘æ xp is continuous. We can use
the composition law to deduce the following Power Law: The power of the limit is
the limit of the power.

That is, prove that if limxæa f(x) exists, then

lim
xæa

(f(x)p) =
3

lim
xæa

f(x)
4p

.

Here is the proof. Let h(x) = xp. Then because h(x) is a continuous function,
we can use the composition law to conclude that

lim
xæa

h(f(x)) = h(lim
xæa

f(x)). (31.7.4)

(Line (31.7.4) is where we are using the composition law.) Now let’s just plug in
what h(x) is to simplify both sides:

lim
xæa

h(f(x)) = lim
xæa

(f(x))p , h(lim
xæa

f(x)) =
3

lim
xæa

f(x)
4p

. (31.7.5)

Stringing (31.7.4) and (31.7.5) together, we find:

lim
xæa

(f(x))p =
3

lim
xæa

f(x)
4p

.

That’s the power law we wanted to prove, so our proof is complete!

Warning 31.7.7. The power law only makes sense when taking pth powers makes
sense. For example, if p is negative, then the law only makes sense if limxæa f(x) is
not zero.
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31.8 The Intermediate Value Theorem

31.8.1 Some warm-up exercises

Exercise 31.8.1. Consider the function f(x) = x2 + 10. Does this function have a
root?

(Recall that a root is a value of x for which f(x) equals zero. So, another way to
rephrase the question: is there a value of x such that x2 + 10 equals zero?)

Explain.

Exercise 31.8.2. Consider the polynomial function f(x) = x5 + 7x4 ≠ 22x + 19.
(This function is complicated, I know!)

Let me tell you that f(≠10) has the value -29,761. Also, f(3) equals 763.
Based on this information, does f(x) have a root?
(This question is not asking you to find a root; it’s asking you whether a root

exists.)
Explain. Can you explain in such a way where you can ignore/forget how com-

plicated f(x) looks?

We didn’t get to go over the word “theorem” in the previous class (though it was
used on the hand-out). A theorem is a mathematical fact that is very useful, and
that somebody proved for your use. Because somebody has proven our theorems to
be true4, you may utilize theorems whenever you like in the future.

Here is a theorem.

Theorem 31.8.3 (Intermediate Value Theorem). Let f(x) be a continuous function,
and choose two real numbers a and b with a < b. 5 Then for any number N between
f(a) and f(b), 6 there is a number c between a and b so that f(c) = N .

Put another way, on the way from a to b, the graph of f attains (at least) every
height between f(a) and f(b).

Remark 31.8.4. Sometimes, we abbreviate the Intermediate Value Theorem by
“IVT” (especially when we are running out of time on exams or quizzes).

Example 31.8.5. Here is a graph of a function f(x) that your friend began to make,
then stopped part-way:

4
The beauty is, if you want, you can prove it too! It just won’t be easy with the tools you’ve

learned so far, but you can do it.
5
You should imagine these numbers to be on the x-axis.

6
You should imagine N , f(a), and f(b) to be on the y-axis
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8 10

≠4

≠2

0

2

4

???

So you have no idea what f(x) looks like in the region between 8 and 10. However,
you do know that f(8) = 0 and f(10) = ≠3. Therefore, if f(x) is continuous, then
the Intermediate Value Theorem tells you that f(x) must hit (at least) every number
between 0 and ≠3, at least once.7

For example, -2.7 is a number between 0 and -3. So, though you do not know
where, you do know that f(x) must equal -2.7 at some value of x between 8 and 10.
8 Here is a pictorial way to think about it:

8 10

≠4

≠2

0

2

4

???

7
In this example, a = 8 and b = 10.

8
In terms of the letters used in Theorem 31.8.3, N = ≠2.7. And c is the some value between 8

and 10.
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We have drawn, in dashes, the line at height -2.7. Because f(x) is continuous, to
get from height 0 to height ≠3, the graph of f(x) must cross over this line at some
point in the grey region. We don’t know where f(x) crosses the line, but it does so
somewhere between x = 8 and x = 10.

Remark 31.8.6. Note that, in Example 31.8.5, the graph of f(x) crosses over the
line of height -2.7 outside the grey region as well. That’s all well and good, but the
intermediate value theorem only guarantees something about the grey region—i.e.,
about the region between a and b.

Remark 31.8.7. Here are some examples of continuous functions that could fill in
the grey region from Example 31.8.5:

8 10

≠4

≠2

0

2

4

8 10

≠4

≠2

0

2

4

Note that f(x) may attain N at more than one value of c. (You can see this graphi-
cally in the lefthand example: The graph of f(x) crosses the horizontal line of height
N = ≠2.7 three times.)

Note that f(x) does not need to stay inbetween f(a) and f(b). (You can see this
on the righthand example.) That is, even if a < c < b, it need not be true that f(c)
is between f(a) and f(b).

Exercise 31.8.8. Do Exercise 31.8.2 again, using the IVT. Make sure you know
what the values of a, b, and N are.

Do you know the value of c?
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31.9 Intermediate value theorem on a closed in-

terval

Recall that a closed interval is an interval of the form

[a, b]

with a < b. For example, [2, 7] is the interval of all numbers between 2 and 7,
including 2 and 7.

An open interval is an interval of the form

(a, b)

with a < b. For example, (2, 7) is the interval of all numbers between 2 and 7, not
including 2 and 7.

If a function f(x) is defined only on a closed interval [a, b], it’s not obvious what
we mean for f to be continuous—mainly because we can only define a one-sided limit
(and not a limit) at a and b. But we take what we can get:

Definition 31.9.1. If a function f(x) is defined only on a closed interval [a, b], we
say that f is continuous at a if

1. The righthand limit limxæa+ f(x) exists, and

2. limxæa+ f(x) = f(a).

Likewise, we say that f is continuous at b if

1. The lefthand limit limxæb≠ f(x) exists, and

2. limxæb≠ f(x) = f(b).

We say that f is continuous if it is continuous at every point of [a, b]. 9

Theorem 31.9.2. The intermediate value theorem holds for continuous functions
defined on a closed interval.

9
Note that for any element c inside of (a, b)—that is, for any c with a < c < b—we know what

it means for f(x) to be continuous at c, because we know how to define the limit of f at c.
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31.10 A fun exercise: Wonky pizza

Here is a picture of a wonky-shaped pizza. (And yes, it’s gray; not the most tasty-
looking thing, is it?)

Your boss wants you to cut this pizza in half, using one, linear cut. For example,

and

are two cuts you’re allowed to make. Notice that the resulting pizza can have more
than just two pieces (as seen on the righthand cut). All that your boss wants is that
all the pizza on one side of the cut, has the same area as all the pizza on the other
side of the cut.

Exercise 31.10.1. Using the Intermediate Value Theorem, convince yourself that
for any slope m you choose, you can make a cut of slope m such that you divide the
pizza into equal halves (just as your boss requires).

Does the theorem tell you where to cut the pizza?

31.11 Puncture law

Let f(x) and g(x) be two functions. Suppose that the two function are equal away
from a. Then f(x) has a limit at a if g(x) does, and likewise, g(x) has a limit at a
if f(x) does. Moreover,

lim
xæa

f(x) = lim
xæa

g(x).
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Warning 31.11.1. Many calculus textbooks do not talk about a “puncture law.” In
my opinion, this is a bit ludicrous, because about half of the algebraic “tricks” we
have to compute limits are dependent on it. I must admit that I made up the term
“puncture law,” so you may find your peers outside of your class being confused if
you use this law.

Example 31.11.2 (A graphical example). On the left is a graph of f(x), and on
the right is a graph of g(x).

a

≠4

≠2

0

2

4 f(x)

a

≠4

≠2

0

2

4 g(x)

Note that the value of f(x) and g(x) are di�erent at a (the black dots are at di�erent
heights).10 But f(x) and g(x) are otherwise identical, so they have the same limit
at a. This “obvious” fact is called the puncture law.

Example 31.11.3 (Algebraic example). Let

f(x) = x2

x
and g(x) = x.

Note that f(x) is not defined at x = 0, but is equal to g(x) for all other values of x.
Thus, the puncture law tells us that

lim
xæ0

f(x) = lim
xæ0

g(x). (31.11.1)

Of course, you know what the righthand side is (by plugging in what g(x) is):

lim
xæ0

g(x) = lim
xæ0

x = 0. (31.11.2)

10
Let me remind you—as I mentioned in class—that the white dot means that the function does

not take the value of the white dot there. The black dot indicates the value of the function. Often,

we write a white dot where it looks like a function wants to take a value, but does not.
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So, putting (31.11.1) and (31.11.2) together, we see that

lim
xæ0

f(x) = 0.

In other words (by plugging in the definition of f(x)) we find:

lim
xæ0

x2

x
= 0.

Note that this is an example where the quotient law wouldn’t help you, because the
limit of the denominator equals zero!

Example 31.11.4 (Rational functions). Let’s find the limit

lim
xæ2

(x + 1)(x ≠ 2)
x ≠ 2 .

Note that the function we have is undefined when x = 2 (because we can’t divide by
x ≠ 2 when x = 2). But, we know the following:

(x + 1)(x ≠ 2)
x ≠ 2 = x + 1 so long as x ”= 1.

In other words, the two functions

(x + 1)(x ≠ 2)
x ≠ 2 and x + 1

are equal away from x = 1. Thus, the puncture law tells us

lim
xæ2

(x + 1)(x ≠ 2)
x ≠ 2 = lim

xæ2
(x + 1).

Now, let’s just compute the righthand side:

lim
xæ2

(x + 1) = lim
xæ2

x + lim
xæ2

1 (31.11.3)

= 2 + 1
= 3.

(We used the addition law in line (31.11.3).) Putting everything together, we con-
clude:

(x + 1)(x ≠ 2)
x ≠ 2 = 3.
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We’re done, but let me streamline everything to show you what you might be able
to write on a test:

lim
xæ2

(x + 1)(x ≠ 2)
x ≠ 2 = lim

xæ2
(x + 1) by the puncture law

= lim
xæ2

x + lim
xæ2

1 by the addition law

= 2 + 1
= 3.

Another solution you might write on a test is:

lim
xæ2

(x + 1)(x ≠ 2)
x ≠ 2 = lim

xæ2
(x + 1) by the puncture law

= 2 + 1 because polynomial functions are continuous
= 3.

Example 31.11.5 (Another rational function). Let’s do another rational function
example. Let’s compute 11

lim
xæ3

x2 ≠ 2x ≠ 3
x2 ≠ 9 .

This looks very complicated; to use the puncture law, we’d like to find some other
function that is equal to x2≠2x≠3

x2≠9 away from 3. The trick I want you to learn here is
that you can cancel (x ≠ 3) in the top and bottom. This may seem very confusing,
because (x≠3) doesn’t appear anywhere in the function as it’s presented. But you’ll
see that it does appear if you factor.

Pro tip. Why do you want to try to cancel x ≠ 3? It’s because we should feel
that a term of the form “x ≠ 3” is what’s causing the denominator to equal zero at
x = 3. So it’s natural to try and see if, indeed, a factor of (x ≠ 3) can pop up in the
denominator. More generally, for rational functions, if you are computing a limit as
x approaches a, it is natural to try to find (x ≠ a) as a factor of the top and bottom.

Warning. If you don’t know how to divide or factor polynomials, you should
learn by Googling online and practicing—in this class, you are already expected to
know how to divide polynomials using long division, or to factor polynomials through
other tricks.

In fact, we can factor both the top and the bottom:
x2 ≠ 2x ≠ 3

x2 ≠ 9 = (x ≠ 3)(x + 1)
(x ≠ 3)(x + 3) .

11
Note that the quotient law doesn’t help here, because the limit of the denominator equals zero.
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And we see that we can cancel the (x ≠ 3) terms! So, when x does not equal 3, our
function x2≠2x≠3

x2≠9 is equal to
x + 1
x + 3 . (31.11.4)

By the puncture law, we thus conclude the following:

lim
xæ3

x2 ≠ 2x ≠ 3
x2 ≠ 9 = lim

xæ3

x + 1
x + 3 .

And, as we saw in the preparation for last lecture, any rational function is con-
tinuous where it is defined. The rational function in (31.11.4) is defined at x = 3,
so—by the definition of continuity—we can compute the limit simply by plugging 3
into x:

lim
xæ3

x + 1
x + 3 = 3 + 1

3 + 3 = 4
6 = 2

3 .

Putting everything together, we conclude

lim
xæ3

x2 ≠ 2x ≠ 3
x2 ≠ 9 = 2/3.

For next class’s quiz, I expect you to be able to use the puncture law to compute
limits of rational functions. For example, you should be able to compute the following
limits:

1. limxæ0
x3+3x2

x2 .

2. limxæ2
x2+x≠6

x≠2 .

3. limxæ≠2
x2≠4

x2+x≠2 .


