Lecture 28

More on epsilon-delta

Let's practice some more epsilon-delta problems. In the next section, you will see some sample problems worked out.
Exercise 28.0.1. Let $f(x)=3 x+7$. Show that whenever $|x-1|<\frac{2}{3}$, we can conclude that $|f(x)-10|<2$.
(Your answer won't be a number. Instead, your answer will be a string of equalities and inequalities that ultimately show that $|f(x)-10|<2$. Put another way, you are being graded for your work!)
Exercise 28.0.2. Let $f(x)=5 x+7$. Show that if $|x-2|<\frac{1}{5}$, then $|f(x)-17|<1$.
Exercise 28.0.3. Let $f(x)=5 x+7$. Show that if $|x-2|<\frac{1}{5}$, then $|f(x)-17|<3$. (Yes, every number is the same as the previous problem except for the 3.)

Exercise 28.0.4. Let $f(x)=3 x+7$. Find me a number δ so that, whenever $|x-1|<\delta$, we can conclude that $|f(x)-10|<\frac{1}{4}$.
Exercise 28.0.5. Let $f(x)=3 x+7$. Suppose somebody gives you a positive number ϵ. Find me a number δ so that, whenever $|x-1|<\delta$, we can conclude that $\mid f(x)-$ $10 \mid<\epsilon$. (Your δ can be expressed in terms of ϵ.)

Exercise 28.0.6. Let $f(x)=x^{2}+3 x+1$. Suppose $|x-1|<\frac{1}{12}$. Show that $|f(x)-5|<\frac{1}{2}$.

Exercise 28.0.7. Let $f(x)=x^{2}+3 x+1$. Can you find me a number δ so that, whenever $|x-1|<\delta$, we can conclude that $|f(x)-5|<\frac{1}{4}$?
Exercise 28.0.8. Let $f(x)=x^{2}+3 x+1$. Hiro gives you a number $\epsilon>0$. Can you find me a number δ so that, whenever $|x-1|<\delta$, we can conclude that $|f(x)-5|<\epsilon$? (Your δ can be expressed in terms of ϵ.)

Exercise 28.0.9. Let $f(x)=2 x^{3}+4 x^{2}+7$. Show that if $\delta<\sqrt{\frac{\epsilon}{6}}$, then $|x|<\delta$ implies that $|f(x)-7|<\epsilon$.

28.1 Sample problems

Exercise 28.1.1. Let $f(x)=5 x+7$. Show that whenever $|x-1|<\frac{1}{15}$, we can conclude that $|f(x)-12|<\frac{1}{3}$.
(Your answer won't be a number. Instead, your answer will be a string of equalities and inequalities that ultimately show that $|f(x)-10|<2$. Put another way, you are being graded for your work!)

Solution. Let's first simply $f(x)-10$ as much as we can.

$$
\begin{align*}
|f(x)-10| & =|5 x+7-12| \tag{28.1.1}\\
& =|5 x-5| \tag{28.1.2}\\
& =5|x-1| . \tag{28.1.3}
\end{align*}
$$

This number could be huge if x is huge; but we are only asked about "whenever $|x-1|<\frac{1}{15}$, so let's see what we can conclude when this inequality holds. Well, because $|x-1|<\frac{1}{15}$, we can multiply this inequality by 5 on both sides to get

$$
\begin{align*}
5|x-1| & <5 \cdot \frac{1}{15} \tag{28.1.4}\\
& =\frac{1}{3} \tag{28.1.5}
\end{align*}
$$

So tracing through the equalities and inequalities we just worked through, we can conclude that

$$
|f(x)-10|<\frac{1}{3} .
$$

Which is what the problem wanted us to show!
In a test, just writing out the lines from (28.1.1) to (28.1.5) would get you full credit. To be safe, you may wan to indicate/write that you used the condition that $|x-1|<\frac{1}{15}$ in line (28.1.4).

Exercise 28.1.2. Let $f(x)=5 x+7$. Show that if $|x-2|<\frac{1}{4}$, then $|f(x)-17|<\frac{5}{4}$.

Solution.

$$
\begin{align*}
|f(x)-17| & =|5 x+7-17| \tag{28.1.6}\\
& =|5 x-10| \tag{28.1.7}\\
& =5|x-2| \tag{28.1.8}\\
& <5 \cdot \frac{1}{4} \tag{28.1.9}\\
& =\frac{5}{4} . \tag{28.1.10}
\end{align*}
$$

We used that $|x-2|<\frac{1}{4}$ in Line (28.1.9).
Exercise 28.1.3. Let $f(x)=3 x+3$. Find me a number δ so that, whenever $|x-1|<\delta$, we can conclude that $|f(x)-6|<\frac{1}{4}$.

Solution.

$$
\begin{align*}
|f(x)-6| & =|3 x+3-6| \tag{28.1.11}\\
& =|3 x-3| \tag{28.1.12}\\
& =3|x-1| . \tag{28.1.13}
\end{align*}
$$

So we want $3|x-1|$ to be less than $\frac{1}{4}$. Well, if we want the inequality

$$
3|x-1|<\frac{1}{4}
$$

to be true, it's equivalent to wanting the inequality

$$
|x-1|<\frac{1}{12}
$$

to be true. So, so long as δ is any number equal to or less than $\frac{1}{12}$, the assumption that $|x-1|<\delta$ means

$$
\begin{align*}
|x-1| & <\delta \tag{28.1.14}\\
\Longrightarrow 3|x-1| & <3 \delta \tag{28.1.15}\\
& \leq 3 \cdot \frac{1}{12} \tag{28.1.16}\\
& =\frac{1}{4} . \tag{28.1.17}
\end{align*}
$$

So I can give you any δ that's less than or equal to $\frac{1}{12}$. For example, $\delta=\frac{1}{12}$, or $\delta=\frac{1}{13}$. For such a δ, the above work shows that whenever $|x-1|<\delta$, we can conclude that $|f(x)-6|<\frac{1}{4}$.

Exercise 28.1.4. Let $f(x)=3 x+6$. Suppose somebody gives you a positive number ϵ. Find me a number δ so that, whenever $|x-2|<\delta$, we can conclude that $\mid f(x)-$ $12 \mid<\epsilon$. (Your δ can be expressed in terms of ϵ.)

Solution.

$$
\begin{align*}
|f(x)-12| & =|3 x+6-12| \tag{28.1.18}\\
& =3|x-6| . \tag{28.1.19}
\end{align*}
$$

So

$$
\begin{align*}
|f(x)-12| & <\epsilon \tag{28.1.20}\\
\Longleftrightarrow 3|x-6| & <\epsilon \tag{28.1.21}\\
\Longleftrightarrow|x-6| & <\frac{\epsilon}{3} \tag{28.1.22}
\end{align*}
$$

In other words, so long as $|x-6|<\frac{\epsilon}{3}$, we are guaranteed that $|f(x)-12|<\epsilon$. So we can choose δ to equal $\frac{\epsilon}{3}$, or any positive number less than $\frac{\epsilon}{3}$.
Exercise 28.1.5. Let $f(x)=x^{2}+5 x+1$. Suppose $|x-1|<\frac{1}{12}$. Show that $|f(x)-7|<\frac{1}{2}$.

Solution.

$$
\begin{align*}
|f(x)-7| & =\left|x^{2}+5 x+1-7\right| \tag{28.1.23}\\
& =\left|x^{2}+5 x-6\right| \tag{28.1.24}
\end{align*}
$$

At this stage, we need to remember a fact I mentioned in class: No matter what, so long as the limit is correct, this polynomial can be factored by $(x-a)$. In our case, $a=1$ (because we are bounding $|x-1|$ in the problem) and sure enough, we can factor so that

$$
\begin{equation*}
\left|x^{2}+5 x-6\right|=|(x-1)(x-5)| \tag{28.1.25}
\end{equation*}
$$

Finally, we want things that look like $|x-1|$ to pop up as much as possible in our expressions. This is because $|x-1|<\frac{1}{12}$ is the only fact we are allowed to use about the number x. So for example, $x-5$ can be re-written to be $(x-1)-4$. So let's do that.

$$
\begin{equation*}
|(x-1)(x-5)|=|(x-1)((x-1)-4)| \tag{28.1.26}
\end{equation*}
$$

Next, remember that $|A B|=|A| \cdot|B|$. So

$$
\begin{equation*}
|(x-1)((x-1)-4)|=|x-1| \cdot|(x-1)-4| \tag{28.1.27}
\end{equation*}
$$

Finally, we use the triangle inequality, which tells us that $|C+D| \leq|C|+|D|$. So

$$
\begin{equation*}
|(x-1)-4| \leq|x-1|+|4| . \tag{28.1.28}
\end{equation*}
$$

Multiplying both dies of this inequality by $|x-1|$, we see that

$$
\begin{equation*}
|x-1| \cdot|(x-1)-4| \leq|x-1| \cdot(|x-1|+4) . \tag{28.1.29}
\end{equation*}
$$

We have come a long way to find that (by tracing through all the equations above, along with the one inequality):

$$
\begin{equation*}
|f(x)-7| \leq|x-1| \cdot(|x-1|+4) \tag{28.1.30}
\end{equation*}
$$

Because the doodle on the right, $(|x-1|+4)$, is always bigger than or equal to $|f(x)-7|$, if we can guarantee that this doodle is less than ϵ, then we know that $|f(x)-7|$ is also less than ϵ.

Well, we are told that $|x-1|$ is less than $\frac{1}{12}$. So let's see what happens to the doodle:

$$
\begin{equation*}
|x-1| \cdot(|x-1|+4)<\frac{1}{12} \cdot\left(\frac{1}{12}+4\right) . \tag{28.1.31}
\end{equation*}
$$

Whatever is in the parentheses is certainly smaller than $1+5$, so we can write that

$$
\begin{align*}
\frac{1}{12} \cdot\left(\frac{1}{12}+4\right) & <\frac{1}{12} \cdot 5 \tag{28.1.32}\\
& =\frac{5}{12} . \tag{28.1.33}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\frac{5}{12} & <\frac{6}{12} \tag{28.1.34}\\
& =\frac{1}{12} . \tag{28.1.35}
\end{align*}
$$

Combining all the above, line by line, we conclude that $|f(x)-7|<\frac{1}{12}$, as desired.
(Your solution is the entirety of the work above!)
Exercise 28.1.6. Let $f(x)=x^{2}+4 x+1$. Hiro gives you a number $\epsilon>0$. Can you find me a number δ so that, whenever $|x-(-1)|<\delta$, we can conclude that $|f(x)-(-2)|<\epsilon$? (Your δ can be expressed in terms of ϵ.)

Solution.

$$
\begin{align*}
|f(x)-(-2)| & =\left|x^{2}+4 x+1+2\right| \tag{28.1.36}\\
& =\left|x^{2}+4 x+3\right| \tag{28.1.37}\\
& =|(x+1)(x+3)| \tag{28.1.38}\\
& =|x+1||(x+1)+2| \tag{28.1.39}\\
& \leq|x+1|(|x+1|+2) . \tag{28.1.40}
\end{align*}
$$

Let's suppose that $|x+1|$ is less than some number C, so $|x+1|<C$. Then we can conclude that

$$
\begin{equation*}
|x+1|(|x+1|+2) .<|x+1|(C+2) . \tag{28.1.41}
\end{equation*}
$$

If further $|x+1|$ is less than $\frac{\epsilon}{C+2}$, we conclude that

$$
\begin{align*}
|x+1|(C+2) & <\frac{\epsilon}{C+2} \cdot(C+2) \tag{28.1.42}\\
& =\epsilon \tag{28.1.43}
\end{align*}
$$

So, for any positive number C, choose δ to be any positive number less than C and less than $\frac{\epsilon}{C+2}$. Then the work above guarantees that $|x+1|<\delta$ guarantees that $|f(x)-(-2)|<\epsilon$.

So for example, we could choose δ to be any number less than 1 and less than $\frac{\epsilon}{3}$.
Exercise 28.1.7. Let $f(x)=2 x^{3}+4 x^{2}+3$. Show that if $\delta<\sqrt{\frac{\epsilon}{6}}$ and if $\delta<1$, then $|x|<\delta$ implies that $|f(x)-3|<\epsilon$.
Solution.

$$
\begin{align*}
|f(x)-3| & =\left|2 x^{3}+4 x^{2}+3-3\right| \tag{28.1.44}\\
& =\left|2 x^{3}+4 x^{2}\right| \tag{28.1.45}\\
& =2\left|x^{3}+2 x^{2}\right| \tag{28.1.46}\\
& =2\left|x^{2}\right||x+2| . \tag{28.1.47}
\end{align*}
$$

We are asked to show that the condition $|x|<\delta$ implies something. Well, if $|x|<\delta$, then-given what we know about δ-we conclude that $|x|<\sqrt{\frac{\epsilon}{6}}$ and $|x|<1$. So

$$
\begin{align*}
2\left|x^{2}\right||x+2| & <2\left(\sqrt{\frac{\epsilon}{6}}\right)^{2}(1+2) \tag{28.1.48}\\
& =2\left(\frac{\epsilon}{6}\right)(3) \tag{28.1.49}\\
& =\epsilon \tag{28.1.50}
\end{align*}
$$

The string of equalities and inequalities above shows that $|f(x)-3|<\epsilon$, as desired.

