
Lecture 26

Limits and ε-δ

26.1 Remembering derivatives
When estimating slopes, we were led to a natural question: Does the difference
quotient

f(x+ h)− f(x)
h

tend to, or approach, some number as h approaches zero?
Then we defined the following:

Definition 26.1.1 (The derivative). If the difference quotient tends to some number
f ′(x) as h approaches zero, we call f ′(x) the derivative of f at x.

Example 26.1.2. The difference quotient for f(x) = x2 +2, and x = 1, is as follows:

f(x+ h)− f(x)
h

= (x+ h)2 + 2− (x2 + 2)
h

(26.1.1)

= x2 + 2hx+ h2 + 2− x2 − 2)
h

(26.1.2)

= 2hx+ h2

h
(26.1.3)

=

2x+ h when h 6= 0
undefined when h = 0

(26.1.4)

=

2 + h when h 6= 0
undefined when h = 0

(26.1.5)
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So the difference quotient is a function depending on h, and it is undefined when
h = 0 (because we can’t divide by zero). We can draw the graph of this function
(which depends on h) as follows:
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The horizontal axis is labeled by h. The circle in the middle of the graph represents
a place where the graph does not pass through. In other words, that circle at the
point (0, 2) is not part of the graph (because the difference quotient is not defined at
h = 0).

However, as h tends to zero, there is a clear value that this function “wants” to
take. It is 2. Thus, we observe:

The derivative of f(x) = x2 + 2 at x = 1 should be 2.
(End of example.)

But this is no way to live life. We shouldn’t have to draw the graph of a difference
quotient, and fill in a hole at h = 0, each time we want to find the slope of f at some
point x.

So here’s what we’re going to do: Suppose we are given a function

q(h)

that is defined everywhere except at h = 0. We’d like to explore basic examples and
tricks to determine whether q(h) approaches some value as h goes to zero. If such a
value exists, it will be called the limit of q(h) as h goes to zero. This limit will be
written

lim
h→0

q(h).

So let’s get some practice.
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26.2 Limits, visually

Below are some graphs of functions q(h). Each function q is defined everywhere
except at h = 0. For each, determine whether the limit

lim
h→0

q(h)

exists; and if so, say what the limit is.

(a) −3 −2 −1 0 1 2 3
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(b) −3 −2 −1 0 1 2 3
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(c) −3 −2 −1 0 1 2 3

−2

0

2

In the above examples, (a) and (c) have functions whose graphs clearly “ap-
proach” a particular point on the xy-plane as we move along the blue curve toward
h = 0. In both cases, that point has height 1, so we would expect that the limit
limh→0 q(h) = 1.

In (c), if we approach h = 0 from the left, it looks like q(h) wants to attain the
value 0. On the other hand, approaching h = 0 from the right, q(h) approaches the
value 1. There is not a single value that q(h) approaches, so we say that the limit
does not exist.

26.3 Limits for functions that aren’t presented vi-
sually

Below are some functions q(h). Each function q is defined everywhere except at
h = 0. For each, determine whether the limit

lim
h→0

q(h)

exists; and if so, say what the limit is.

1. q(h) =
{
h2 h 6= 0

2. q(h) =

sin(h) h > 0
cos(h) h < 0
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3. q(h) =

1 h is a rational number and h 6= 0
0 h is an irrational number

Remark 26.3.1. Recall that a rational number is a number that can be expressed
as a fraction—things like −2/7, or 13, or 5/6. An irrational number is a real number
that is not a fraction. For example,

√
2 or π.)

Remark 26.3.2. A function is called piecewise defined when it is defined in the
following format:

q(h) =


blah blah some condition on h

blahbitty blah some other condition on h

Rob Loblaw perhaps another condition on h

We tend to define functions using the above format when it’s not easy to define the
function in one fell swoop. For example, the function (3) above means that q(h)
equals 1 when h is a non-zero rational number, and equals 0 when h is an irrational
number.

26.4 Epsilon-delta condition
For the next few days, we will explore something called ε-δ proofs (this is read as
“epsilon-delta” proofs).

Here is the general principle: Given a function g and a suspected limit for g,
you must find a δ (read delta) that guarantees you can get within ε (epsilon) of the
suspected limit after applying g.

Example 26.4.1. Let g(x) = (8x2 + x)/x. You suspect that the limit of g(x) as
x approaches zero is 1. (You might arise at such a suspicion by simplifying g, or
drawing a graph of g.)

Now let ε = 0.1. Can you find a positive number δ so that, so long as you choose
a x 6= 0 with |x| < δ, then f(x) is within ε of 1? (Put another way, so long as x is
small enough—meaning its absolute value is less than δ—then the value of g(x) is
very close to 1—meaning at most distance ε from 1.)

Yes, you can.
To see how you can find this δ, let’s note the following:

|g(x)− 1| = |8x
2 + x

x
− x

x
| = |8x

2 + x− x
x

| = |8x
2

x
| = |8x| (when x 6= 0)
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The very lefthand side of this expression is the distance between g(x) and the sus-
pected limit, 1. The very righthand side is telling you that this distance is always
given by |8x| when x 6= 0. So for example, if you took x to be 0.2, then the distance
between g(x) and your suspected limit would be |8x| = |8× 0.2| = 1.6.

So if you want g(x) to be within ε of 1, you want |8x| to be less than ε. That is,
you want

|8x| < ε.

This happens so long as |x| < ε/8. So, choose δ = ε/8. Then so long as |x| < δ, you
can guarantee that |g(x)− 1| < ε.

Note that while I originally asked for a δ so that you are within 0.1 of the suspected
limit, you have discovered that regardless of ε, you can choose δ = ε/8 to be within
ε of the suspected limit.

Example 26.4.2. Let g(x) = 3x/x. You suspect that the limit of f(x) as x ap-
proaches zero is 3.

And let ε = 12. Can you find a positive number δ so that, so long as x 6= 0 and
|x| < δ, then g(x) is within ε of 3?

Yes; in fact, any positive number δ will do. This is because—regardless of x—g(x)
is always equal to 3 so long as x 6= 0. Thus

|g(x)− 3| = |3x
x
− 3| = 0 whenever x 6= 0

and 0 is of course smaller than any ε. So, regardless of δ, your g(x) will always be
within δ of 3.

Example 26.4.3. Let g(x) = (4x3 + 9x)/x. You suspect that the limit of g(x) as
x approaches zero is 9. (You might arise at such a suspicion by simplifying g, or
drawing a graph of g.)

Now suppose someone gives you some positive number called ε. Can you find
a positive number δ so that, so long as you choose a value of x so that x 6= 0 and
|x| < δ, then g(x) is within ε of 9? That is, can you find a δ so that

|x| < δ, x 6= 0 implies |g(x)− 9| < ε?

Yes, you can.
To see how you can find this δ, let’s note the following:

|g(x)− 9| = |(4x
3 + 9x)
x

− 9x
x
| = |4x

3 + 9x− 9x
x

| = |4x
3

x
| = |4x2| (when x 6= 0)
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The very lefthand side of this expression is the distance between g(x) and the sus-
pected limit, 9. The very righthand side is telling you that this distance is always
given by |4x2| when x 6= 0. So for example, if you took x to be 0.1, then the distance
between g(x) and your suspected limit would be |4x2| = |4× 0.01| = 0.04.

So if you want g(x) to be within ε of 9, you want |4x2| to be less than ε. That is,
you want

|4x2| < ε.

That is, you want
|x2| < ε/4.

Because squaring a number preserves <—meaning a2 < b2 if and only if |a| < |b|—we
conclude that for the above inequality to hold, we want

|x| <
√
ε/4.

Thus, set δ =
√
ε/4. Then, based on the work above, we know that if |x| < δ, then

|g(x)− 9| is less than ε.

26.5 For next time
For next quiz, you will be tested on whether—given g(x), a suspected limit L, and
ε—you can find a δ so that

If x 6= 0 and |x| < δ, then |g(x)− L| < ε.

You will be quizzed on the following g and L. (You should be able to find δ as an
expression involving only g, L, ε, though often you will not need L at all.)

1. g(x) = (2x3 + 9x)/x, with L = 9.

2. g(x) = (5x2 + 7x)/x, with L = 7.

3. g(x) = 3, with L = 3.
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