Lecture 26

Limits and $\epsilon-\delta$

26.1 Remembering derivatives

When estimating slopes, we were led to a natural question: Does the difference quotient

$$
\frac{f(x+h)-f(x)}{h}
$$

tend to, or approach, some number as h approaches zero?
Then we defined the following:
Definition 26.1.1 (The derivative). If the difference quotient tends to some number $f^{\prime}(x)$ as h approaches zero, we call $f^{\prime}(x)$ the derivative of f at x.

Example 26.1.2. The difference quotient for $f(x)=x^{2}+2$, and $x=1$, is as follows:

$$
\begin{align*}
\frac{f(x+h)-f(x)}{h} & =\frac{(x+h)^{2}+2-\left(x^{2}+2\right)}{h} \tag{26.1.1}\\
& =\frac{\left.x^{2}+2 h x+h^{2}+2-x^{2}-2\right)}{h} \tag{26.1.2}\\
& =\frac{2 h x+h^{2}}{h} \tag{26.1.3}\\
& = \begin{cases}2 x+h & \text { when } h \neq 0 \\
\text { undefined } & \text { when } h=0\end{cases} \tag{26.1.4}\\
& = \begin{cases}2+h & \text { when } h \neq 0 \\
\text { undefined } & \text { when } h=0\end{cases} \tag{26.1.5}
\end{align*}
$$

So the difference quotient is a function depending on h, and it is undefined when $h=0$ (because we can't divide by zero). We can draw the graph of this function (which depends on h) as follows:

The horizontal axis is labeled by h. The circle in the middle of the graph represents a place where the graph does not pass through. In other words, that circle at the point $(0,2)$ is not part of the graph (because the difference quotient is not defined at $h=0)$.

However, as h tends to zero, there is a clear value that this function "wants" to take. It is 2. Thus, we observe:

The derivative of $f(x)=x^{2}+2$ at $x=1$ should be 2.
(End of example.)
But this is no way to live life. We shouldn't have to draw the graph of a difference quotient, and fill in a hole at $h=0$, each time we want to find the slope of f at some point x.

So here's what we're going to do: Suppose we are given a function

$$
q(h)
$$

that is defined everywhere except at $h=0$. We'd like to explore basic examples and tricks to determine whether $q(h)$ approaches some value as h goes to zero. If such a value exists, it will be called the limit of $q(h)$ as h goes to zero. This limit will be written

$$
\lim _{h \rightarrow 0} q(h) .
$$

So let's get some practice.

26.2 Limits, visually

Below are some graphs of functions $q(h)$. Each function q is defined everywhere except at $h=0$. For each, determine whether the limit

$$
\lim _{h \rightarrow 0} q(h)
$$

exists; and if so, say what the limit is.
(a)

(b)

In the above examples, (a) and (c) have functions whose graphs clearly "approach" a particular point on the xy-plane as we move along the blue curve toward $h=0$. In both cases, that point has height 1 , so we would expect that the limit $\lim _{h \rightarrow 0} q(h)=1$.

In (c), if we approach $h=0$ from the left, it looks like $q(h)$ wants to attain the value 0 . On the other hand, approaching $h=0$ from the right, $q(h)$ approaches the value 1. There is not a single value that $q(h)$ approaches, so we say that the limit does not exist.

26.3 Limits for functions that aren't presented visually

Below are some functions $q(h)$. Each function q is defined everywhere except at $h=0$. For each, determine whether the limit

$$
\lim _{h \rightarrow 0} q(h)
$$

exists; and if so, say what the limit is.

1. $q(h)= \begin{cases}h^{2} & h \neq 0\end{cases}$
2. $q(h)= \begin{cases}\sin (h) & h>0 \\ \cos (h) & h<0\end{cases}$
3. $q(h)= \begin{cases}1 & h \text { is a rational number and } h \neq 0 \\ 0 & h \text { is an irrational number }\end{cases}$

Remark 26.3.1. Recall that a rational number is a number that can be expressed as a fraction-things like $-2 / 7$, or 13 , or $5 / 6$. An irrational number is a real number that is not a fraction. For example, $\sqrt{2}$ or π.)

Remark 26.3.2. A function is called piecewise defined when it is defined in the following format:

$$
q(h)= \begin{cases}\text { blah blah } & \text { some condition on } h \\ \text { blahbitty blah } & \text { some other condition on } h \\ \text { Rob Loblaw } & \text { perhaps another condition on } h\end{cases}
$$

We tend to define functions using the above format when it's not easy to define the function in one fell swoop. For example, the function (3) above means that $q(h)$ equals 1 when h is a non-zero rational number, and equals 0 when h is an irrational number.

26.4 Epsilon-delta condition

For the next few days, we will explore something called $\epsilon-\delta$ proofs (this is read as "epsilon-delta" proofs).

Here is the general principle: Given a function g and a suspected limit for g, you must find a $\delta($ read delta $)$ that guarantees you can get within ϵ (epsilon) of the suspected limit after applying g.

Example 26.4.1. Let $g(x)=\left(8 x^{2}+x\right) / x$. You suspect that the limit of $g(x)$ as x approaches zero is 1 . (You might arise at such a suspicion by simplifying g, or drawing a graph of g.)

Now let $\epsilon=0.1$. Can you find a positive number δ so that, so long as you choose a $x \neq 0$ with $|x|<\delta$, then $f(x)$ is within ϵ of 1 ? (Put another way, so long as x is small enough - meaning its absolute value is less than δ - then the value of $g(x)$ is very close to 1 - meaning at most distance ϵ from 1.)

Yes, you can.
To see how you can find this δ, let's note the following:

$$
|g(x)-1|=\left|\frac{8 x^{2}+x}{x}-\frac{x}{x}\right|=\left|\frac{8 x^{2}+x-x}{x}\right|=\left|\frac{8 x^{2}}{x}\right|=|8 x| \quad(\text { when } x \neq 0)
$$

The very lefthand side of this expression is the distance between $g(x)$ and the suspected limit, 1 . The very righthand side is telling you that this distance is always given by $|8 x|$ when $x \neq 0$. So for example, if you took x to be 0.2 , then the distance between $g(x)$ and your suspected limit would be $|8 x|=|8 \times 0.2|=1.6$.

So if you want $g(x)$ to be within ϵ of 1 , you want $|8 x|$ to be less than ϵ. That is, you want

$$
|8 x|<\epsilon
$$

This happens so long as $|x|<\epsilon / 8$. So, choose $\delta=\epsilon / 8$. Then so long as $|x|<\delta$, you can guarantee that $|g(x)-1|<\epsilon$.

Note that while I originally asked for a δ so that you are within 0.1 of the suspected limit, you have discovered that regardless of ϵ, you can choose $\delta=\epsilon / 8$ to be within ϵ of the suspected limit.

Example 26.4.2. Let $g(x)=3 x / x$. You suspect that the limit of $f(x)$ as x approaches zero is 3 .

And let $\epsilon=12$. Can you find a positive number δ so that, so long as $x \neq 0$ and $|x|<\delta$, then $g(x)$ is within ϵ of 3 ?

Yes; in fact, any positive number δ will do. This is because - regardless of $x-g(x)$ is always equal to 3 so long as $x \neq 0$. Thus

$$
|g(x)-3|=\left|\frac{3 x}{x}-3\right|=0 \quad \text { whenever } x \neq 0
$$

and 0 is of course smaller than any ϵ. So, regardless of δ, your $g(x)$ will always be within δ of 3 .

Example 26.4.3. Let $g(x)=\left(4 x^{3}+9 x\right) / x$. You suspect that the limit of $g(x)$ as x approaches zero is 9 . (You might arise at such a suspicion by simplifying g, or drawing a graph of g.)

Now suppose someone gives you some positive number called ϵ. Can you find a positive number δ so that, so long as you choose a value of x so that $x \neq 0$ and $|x|<\delta$, then $g(x)$ is within ϵ of 9 ? That is, can you find a δ so that

$$
|x|<\delta, x \neq 0 \quad \text { implies } \quad|g(x)-9|<\epsilon ?
$$

Yes, you can.
To see how you can find this δ, let's note the following:

$$
|g(x)-9|=\left|\frac{\left(4 x^{3}+9 x\right)}{x}-\frac{9 x}{x}\right|=\left|\frac{4 x^{3}+9 x-9 x}{x}\right|=\left|\frac{4 x^{3}}{x}\right|=\left|4 x^{2}\right| \quad(\text { when } x \neq 0)
$$

The very lefthand side of this expression is the distance between $g(x)$ and the suspected limit, 9 . The very righthand side is telling you that this distance is always given by $\left|4 x^{2}\right|$ when $x \neq 0$. So for example, if you took x to be 0.1 , then the distance between $g(x)$ and your suspected limit would be $\left|4 x^{2}\right|=|4 \times 0.01|=0.04$.

So if you want $g(x)$ to be within ϵ of 9 , you want $\left|4 x^{2}\right|$ to be less than ϵ. That is, you want

$$
\left|4 x^{2}\right|<\epsilon
$$

That is, you want

$$
\left|x^{2}\right|<\epsilon / 4
$$

Because squaring a number preserves $<$-meaning $a^{2}<b^{2}$ if and only if $|a|<|b|$-we conclude that for the above inequality to hold, we want

$$
|x|<\sqrt{\epsilon / 4}
$$

Thus, set $\delta=\sqrt{\epsilon / 4}$. Then, based on the work above, we know that if $|x|<\delta$, then $|g(x)-9|$ is less than ϵ.

26.5 For next time

For next quiz, you will be tested on whether- given $g(x)$, a suspected limit L, and ϵ - you can find a δ so that

$$
\text { If } x \neq 0 \text { and }|x|<\delta, \text { then }|g(x)-L|<\epsilon
$$

You will be quizzed on the following g and L. (You should be able to find δ as an expression involving only g, L, ϵ, though often you will not need L at all.)

1. $g(x)=\left(2 x^{3}+9 x\right) / x$, with $L=9$.
2. $g(x)=\left(5 x^{2}+7 x\right) / x$, with $L=7$.
3. $g(x)=3$, with $L=3$.
