Lecture 25

More practice!

25.1 Taking antiderivatives

Compute the following indefinite integrals. Many are taken from Guichard's textbook.

Exercise 25.1.1. $\int 25-x^{2} d x$
Exercise 25.1.2. $\int(1-t)^{9} d t$
Exercise 25.1.3. $\int\left(x^{2}+1\right)^{2} d x$
Exercise 25.1.4. $\int x\left(x^{2}+1\right)^{100} d x$
Exercise 25.1.5. $\int \frac{1}{(1-5 t)^{1 / 3}} d t$
Exercise 25.1.6. $\int \sin ^{3} x \cos x d x$
Exercise 25.1.7. $\int x \sqrt{100-x^{2}} d x$
Exercise 25.1.8. $\int \frac{x^{2}}{\sqrt{1-x^{3}}} d x$
Exercise 25.1.9. $\int \cos (\pi t) \cos (\sin (\pi t)) d t$
Exercise 25.1.10. $\int \frac{\sin x}{\cos ^{3} x} d x$
Exercise 25.1.11. $\int \tan x d x$

25.2 Computing definite integrals

Exercise 25.2.1. Evaluate

$$
\int_{1}^{4} \frac{3}{x^{2}} d x
$$

Exercise 25.2.2. Evaluate

$$
\int_{0}^{\pi} \sin ^{5}(3 x) \cos (3 x) d x
$$

Exercise 25.2.3. Evaluate

$$
\int_{1}^{e^{2}} \frac{1}{x} d x
$$

Exercise 25.2.4. Evaluate

$$
\int_{1}^{8} \frac{3 x^{2}+2}{\sqrt{x}} d x
$$

Exercise 25.2.5. Evaluate

$$
\int_{0}^{2 \pi} 8 \cos (x) d x
$$

Exercise 25.2.6. Evaluate

$$
\int_{1}^{8} 2 x+10 d x
$$

25.3 Areas between curves

Exercise 25.3.1. Find the area between the graphs of $x^{2}+2 x-10$ and $4 x-7$.
Exercise 25.3.2. Find the area between the three curves $y=x$ and $y=7 x$ and $x=1$. (You may want to draw a picture.)

Exercise 25.3.3. Find the area between the graphs of x^{3} and x^{2}.

25.4 Average values

Exercise 25.4.1. Find the average value of $f(x)=3+2 x^{2}$ on the interval $[0, \sqrt{3}]$.
Exercise 25.4.2. An object attached to a (horizontally aligned) spring moves with velocity $v(t)=\sin (t)$.
(a) What is the average velocity of this object over the interval $[0,2 \pi]$?
(b) What is the average velocity of this object over the interval $[0, \pi]$?

Exercise 25.4.3. The number of new infections per day at the beginning of an outbreak can be modeled by the function $f(t)=e^{t}$, where t is in days and $f(t)$ is in units of (new) infections per day.
(a) At day 10, how many new infections are arising per day? (You can use a calculator if you want a decimal answer.)
(b) Between day 0 and day 10 , on average, how many new infections have there been per day? (You can use a calculator if you want a decimal answer.)

25.5 Word problems

Exercise 25.5.1. A particle moves with velocity function $v(t)=-t^{2}+3 x-2$. Find the displacement (the signed distance between the starting and ending point) of the particle over the time interval $[-2,3]$.

Exercise 25.5.2. An epidemiologist models that by day t of a pandemic, her county will have accumulated

$$
\int_{0}^{t} 10 e^{5 x} d x
$$

infections total. According to this, how many new infections per day will her county be seeing at the moment $t=5$? (Hint: Fundamental Theorem.)

25.6 Some challenges

Exercise 25.6.1. How do Riemann sums for the function $f(x)=\frac{1}{x}$ from $a=1$ to $b=t$ help you compute $\ln (t)$?

Exercise 25.6.2. Using the mean value theorem and the fundamental theorem of calculus, show that for any interval $[a, b]$ and a function f, there is some number c between a and b so that $f(c)$ is equal to the average value of f on the interval $[a, b]$.

