Lecture 25

More practice!

25.1 Taking antiderivatives

Compute the following indefinite integrals. Many are taken from Guichard's textbook.

Exercise 25.1.1. $\int 25 - x^2 dx$ Exercise 25.1.2. $\int (1-t)^9 dt$ Exercise 25.1.3. $\int (x^2+1)^2 dx$ Exercise 25.1.4. $\int x(x^2+1)^{100} dx$ Exercise 25.1.5. $\int \frac{1}{(1-5t)^{1/3}} dt$ Exercise 25.1.6. $\int \sin^3 x \cos x dx$ Exercise 25.1.7. $\int x \sqrt{100 - x^2} dx$ Exercise 25.1.8. $\int \frac{x^2}{\sqrt{1-x^3}} dx$ Exercise 25.1.9. $\int \cos(\pi t) \cos(\sin(\pi t)) dt$ Exercise 25.1.10. $\int \frac{\sin x}{\cos^3 x} dx$ Exercise 25.1.11. $\int \tan x dx$

25.2 Computing definite integrals

Exercise 25.2.1. Evaluate

$$\int_1^4 \frac{3}{x^2} \, dx$$

Exercise 25.2.2. Evaluate

$$\int_0^\pi \sin^5(3x)\cos(3x)\,dx$$

Exercise 25.2.3. Evaluate

$$\int_{1}^{e^2} \frac{1}{x} \, dx$$

Exercise 25.2.4. Evaluate

$$\int_{1}^{8} \frac{3x^2 + 2}{\sqrt{x}} \, dx$$

Exercise 25.2.5. Evaluate

$$\int_0^{2\pi} 8\cos(x)\,dx$$

Exercise 25.2.6. Evaluate

$$\int_{1}^{8} 2x + 10 \, dx$$

25.3 Areas between curves

Exercise 25.3.1. Find the area between the graphs of $x^2 + 2x - 10$ and 4x - 7.

Exercise 25.3.2. Find the area between the three curves y = x and y = 7x and x = 1. (You may want to draw a picture.)

Exercise 25.3.3. Find the area between the graphs of x^3 and x^2 .

25.4 Average values

Exercise 25.4.1. Find the average value of $f(x) = 3 + 2x^2$ on the interval $[0, \sqrt{3}]$.

Exercise 25.4.2. An object attached to a (horizontally aligned) spring moves with velocity $v(t) = \sin(t)$.

- (a) What is the average velocity of this object over the interval $[0, 2\pi]$?
- (b) What is the average velocity of this object over the interval $[0, \pi]$?

Exercise 25.4.3. The number of new infections per day at the beginning of an outbreak can be modeled by the function $f(t) = e^t$, where t is in days and f(t) is in units of (new) infections per day.

- (a) At day 10, how many new infections are arising per day? (You can use a calculator if you want a decimal answer.)
- (b) Between day 0 and day 10, on average, how many new infections have there been per day? (You can use a calculator if you want a decimal answer.)

25.5 Word problems

Exercise 25.5.1. A particle moves with velocity function $v(t) = -t^2 + 3x - 2$. Find the displacement (the signed distance between the starting and ending point) of the particle over the time interval [-2, 3].

Exercise 25.5.2. An epidemiologist models that by day t of a pandemic, her county will have accumulated

$$\int_0^t 10e^{5x} \, dx$$

infections total. According to this, how many new infections per day will her county be seeing at the moment t = 5? (Hint: Fundamental Theorem.)

25.6 Some challenges

Exercise 25.6.1. How do Riemann sums for the function $f(x) = \frac{1}{x}$ from a = 1 to b = t help you compute $\ln(t)$?

Exercise 25.6.2. Using the mean value theorem and the fundamental theorem of calculus, show that for any interval [a, b] and a function f, there is some number c between a and b so that f(c) is equal to the average value of f on the interval [a, b].