Lecture 10

Second derivatives, concavity, and minima/maxima

10.1 Second derivatives

Today, we will practice taking "second derivatives," and knowing when they are positive or negative.

Definition 10.1.1. The second derivative of f is the derivative of the derivative¹ of f. We denote the second derivative by

$$f''$$
, or $\frac{d}{dx}(\frac{d}{dx}f)$, or $\frac{d^2f}{dx^2}f$, or $\frac{d^2f}{dx^2}$. (10.1.1)

Example 10.1.2. Let $f(x) = 3x^2 + x - 7$. Then the (first) derivative of f is

$$f'(x) = 6x + 1.$$

If we take the derivative of f'(x), we end up with the second derivative of f:

$$f''(x) = 6.$$

Example 10.1.3. Here are more examples of functions and their second derivatives. You should verify these examples:

• If $f(x) = \sin(x)$, then $f''(x) = -\sin(x)$.

 $^{^1\}mathrm{Yes},$ there are two appearances of the word "derivative"; this is not a typo.

- If $f(x) = e^x$, then $f''(x) = e^x$.
- If $f(x) = e^{5x}$, then $f''(x) = 25e^{5x}$.
- If $f(x) = x^3 5x^2$, then f''(x) = 6x 10.

Example 10.1.4. Let's find the second derivative of $f(x) = \ln(x)$. As defined above, we just need need to take the derivative twice. Let's take the first derivative:

$$f'(x) = \frac{1}{x}.$$

(This is something we learned in class.) Now let's take another derivative—for example, by using the quotient rule—to find

$$f''(x) = \frac{0 \cdot x - 1 \cdot 1}{x^2} = -\frac{1}{x^2}.$$

That is, the second derivative of $\ln x$ is $-1/(x^2)$.

If you know how to take derivatives, you know how to take second derivatives. So you see how our skills are building on each other—make sure you practice taking derivatives!

Example 10.1.5. Let $f(x) = x^2 - 2$. Where is the second derivative positive? Let's find the second derivative. We see that

$$f'(x) = 2x$$

 \mathbf{SO}

$$f''(x) = 2.$$

So the second derivative is always 2, meaning the second derivative is positive *every-where*.

Example 10.1.6. Let $f(x) = x^3 - 3x^2 + 3$. Where is the second derivative positive? Let's find the second derivative. We see that

$$f'(x) = 3x^2 - 6x$$

so, taking the derivative of f'(x), we find:

$$f''(x) = 6x - 6.$$

So the second derivative is positive when 6x - 6 is positive. This happens exactly when 6x > 6—that is, when x > 1.

As a bonus: The second derivative is negative when 6x < 6—that is, when x < 1.

Below is a graph of f(x), and I have shaded in **bold** the part of the graph where the second derivative is positive:

Example 10.1.7. Let $f(x) = x^4 - 24x^2 + 50$. Where is the second derivative positive? Let's find the second derivative. We see that

$$f'(x) = 4x^3 - 48x$$

so, taking the derivative of f'(x), we find:

$$f''(x) = 12x^2 - 48.$$

So the second derivative is positive when $12x^2 - 48$ is positive. This happens exactly when $12x^2 > 48$ —that is, when $x^2 > 4$. But $x^2 > 4$ exactly when x < -2 or x > 2.

As a bonus: The second derivative is negative when $x^2 < 4$ —that is, when x is between -2 and 2.

Below is a graph of f(x), and I have shaded in **bold** the part of the graph where

the second derivative is positive:

Example 10.1.8. Let $f(x) = 3\sin(x)$. Where is the second derivative positive? Let's find the second derivative. We see that

$$f'(x) = 3\cos(x)$$

so, taking the derivative of f'(x), we find:

$$f''(x) = -3\sin(x)$$

So the second derivative is positive when $-3\sin(x)$ is positive. This happens exactly when $\sin(x)$ is negative. And based on our trigonometry knowledge from precalculus, we know that this happens when

- x is between π and 2π ,
- x is between 3π and 4π ,
- x is between $-\pi$ and 0,
- x is between -3π and $-\pi$,
-

Below is a graph of f(x). I have shaded in **bold** the part of the graph where the second derivative is positive:

For next class, I expect you to be able to do the following: For each of the functions f(x) below, (i) State *where* the function has a *positive* second derivative, and (ii) Shade in **bold** where the graph of the function has positive second derivative. (You will be provided the graph of f(x).)

(a)
$$f(x) = -x^4 + 24x^2 - 50.$$

52LECTURE 10. SECOND DERIVATIVES, CONCAVITY, AND MINIMA/MAXIMA

You have seen examples of graphs with positive second derivative. Here are some examples, with the positive-second-derivative regions shaded in *bold*:

1. $f(x) = x^3 - 3x^2 + 3$:

4.
$$f(x) = e^x$$
:

2. $f(x) = 3\sin(x)$:

5. $f(x) = \tan(x)$:

10.2 Concavity

The point I want to make with these pictures is that the value of the second derivative gives us some idea of what the graph looks like. (Though not a complete picture.)

Intuition: On the regions where the second derivative is positive, the graph of f looks like a *portion* of an "upright bowl." Some students have described this as "opening upward" as well.

Conversely, when the second derivative is negative, the graph of f looks like a portion of an "upside-down bowl." But we have technical names, too. From now on, you are expected to know the following terminology:

Definition 10.2.1 (Concavity). We say that f is concave up at x if f''(x) > 0. We say that f is concave down at x if f''(x) < 0.

10.3 Inflection points

Definition 10.3.1. If f''(x) = 0, and the concavity of f changes at x, we say that x is an *inflection point*.

Example 10.3.2. Here are some examples of functions and their graphs, with their inflection points labeled.

3. $f(x) = x^4 - 24x^2 + 50$:

200

0

-200

-6

-4 -2

0 2 4 6

(No inflection points.)

(No inflection points, even though f''(x) = 0 at x = 0.)

Expectation 10.3.3. Based on looking at a graph, you are expected to be able to identify inflection points—an inflection point is a place at which a function switches concavity (from up to down, or from down to up).

Exercise 10.3.4. Now we're going to try to learn something about a function by knowing its derivative and second derivative. You can hunt for examples on the previous pages of this packet. Or, you can try understanding $f(x) = x^2$ and $f(x) = -x^2$.

- 1. Can you find an example of a function f, and a point x, where f'(x) = 0 and f is concave up at x? What does the function f look like near x? How does the value of f at x compare to the value of f at nearby points?
- 2. Can you find an example of a function f, and a point x, where f'(x) = 0 and f is concave *down* at x? What does the function f look like near x? How does the value of f at x compare to the value of f at nearby points?

10.4 Local extrema (minima and maxima)

Let's study the example of $f(x) = x^3 - 3x^2 + 3$:

Just by looking at the graph, we can see the two points where the derivative of f is zero (i.e., the two points where the tangent lines are horizontal). They roughly occur at x = 0 and x = 2. (And you can prove that they *exactly* occur there if you do out the math—that is, if you solve the equation f'(x) = 0 for x.)

We see that at x = 0, the function is concave down. Moreover, it looks like f(0) is the *biggest* value that f achieves near x = 0. We will call such a point a **local** maximum. (That is, x = 0 is a local maximum.)

And at x = 2, we see that the function is concave up. Moreover, it looks like f(2) is the *smallest* value that f achieves near x = 2. We call such a point a **local minimum** (so x = 2 is a local minimum). A point is called a local extremum (the plural is "local extrema") if it is either a local maximum or a local minimum.

Your intuition might tell you that wherever there is a local maximum or a local minimum, the graph should have a "trough" or a "crest." In particular, the derivative should be zero there! This is true so long as the function is differentiable:

Theorem 10.4.1. If f is a differentiable function, and if x is a local minimum or a local maximum, then f'(x) = 0.

Warning 10.4.2. These minima and maxima are called "local." This is because if x is a local minimum, it may not be true that f(x) is the "minimum" value that f can take!

In the example above of $f(x) = x^3 - 3x^2 + 3$, we see that f(x) can take as negative a value as it wants, so f has no "absolute minimum." Likewise, f(x) can take as positive value as it wants, so f has no "absolute maximum." It only has a "local" minimum at x = 2, where the value of f(2) is smaller than the value at all *neighboring* points (i.e., all nearby points).

10.5 Critical points

So it will be important for us to find x for which f' vanishes. Such special points have a name:

Definition 10.5.1. Let f be a function. If f is differentiable at x, we say that x is a *critical point* of f if f'(x) = 0.

Example 10.5.2. If f(x) = 5, every point is a critical point.

If f(x) = 3x, f has no critical points. If $f(x) = x^2$, x = 0 is a critical point. In fact, zero is a critical point for $f(x) = x^3$ and for $f(x) = x^4$, and so forth.

Warning 10.5.3. Not all critical points are local extrema. (For example, look at the critical point of $f(x) = x^3$.)

Warning 10.5.4. If f is not differentiable, not all local extrema are critical points. Consider the example of f(x) = |x|. This has a minimum at x = 0, but f does not have a derivative there (as we have seen before).

10.6 The second derivative test

The following is called the **second derivative test** for finding local maxima and local minima. You in fact discovered it when thinking about Exercise 10.3.4.

Theorem 10.6.1 (The second derivative test). Suppose that f'(x) = 0 and f''(x) > 0. Then f has a *local minimum* at x.

Suppose that f'(x) = 0 and f''(x) < 0. Then f has a local maximum at x.

This helps us draw f: We know that f looks like a hump/hilltop/crest where f has a local maximum. And we know that f looks like a bowl/trough/nadir where f has a local minimum.

10.7 The second derivative test can be inconclusive

If f'(x) = 0 and f''(x) = 0, we do not know whether we have a local maximum or minimum (or neither)! Here are two examples:

Example 10.7.1. Consider $f(x) = (x - 2)^3$. Then—check this!—f'(2) = 0 and f''(2) = 0. Below is a graph of f(x):

This is a strange example, but it is a great one. As you can see, the graph does have "flat" tangent line at x = 2, but x = 2 is neither a local maximum nor a local minimum—I can immediately get larger than f(2) = 0 by moving right, or immediately get smaller than f(2) = 0 by moving left.

Example 10.7.2. Here is the example of $f(x) = (x - 1)^4$. We can check easily that

As we can see from the picture, we have a *local minimum* at x = 1.

The conclusion from the above two examples is: If the hypotheses of the second derivative test are not met, we have to do more work to determine whether we have a local minimum or maximum.

10.8 For next time

You should be able to tell me the second derivatives of the following functions:

- (a) $x^3 3x^2 + x$
- (b) $4x^2 + 3x 2$
- (c) e^{7x}
- (d) $\sin(x)$

You should also be able to tell me where the following functions are concave up:

(a) $x^3 - 3x^2 + x$ (b) $4x^2 + 3x - 2$ (c) e^{7x}