
Lecture 7

Derivatives of exp and ln

7.1 Drawing derivatives of a graph
Exercise 7.1.1. Below on the left is the graph of f(x) = ex.

ex

1 1

Let me tell you the following fact: The derivative of ex at x = 0 is 1. (In fact, the
value of ex at x = 0 is 1 also.)

(a) Based on this, draw the derivative of ex on the right.

(b) How does your drawing compare to the graph of ex?
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In fact, we have the following theorem:

Theorem 7.1.2 (Derivative of ex). The derivative of ex is itself. That is,

(ex)Õ = ex.

Put another way,
d

dx
(ex) = ex.

How cool is that? There’s a function that is its own derivative!

Example 7.1.3. Let’s find the derivative of e3x. We have
d

dx
(e3x) = d

dx
(3x) · d(ex)

dx
(3x) (7.1.1)

= 3 · e3x. (7.1.2)

We have used the chain rule in the first line. If you’re confused by it, it may be
worthwhile to write this out step-by-step. Let’s let f(x) = ex and g(x) = 3x. Then
e3x = f(g(x)). Thus

d

dx
(e3x) = d

dx
f(g(x)) (7.1.3)

= f Õ(g(x)) · gÕ(x) (7.1.4)
= f Õ(3x) · gÕ(x). (7.1.5)

(The second equality is due to the chain rule.) But we know that f Õ(x) = ex by
Theorem 7.1.2, and we know gÕ(x) = 3 from previous lectures. Hence we can continue:

f Õ(3x) · gÕ(x) = e3x · 3 = 3e3x.

Exercise 7.1.4. Fix a real number B. Prove that the derivative of

f(x) = eBx

equals
Bf(x).

More generally, if you have another real number A, let

g(x) = AeBx.

(For example, if you choose A = 3 and B = 5, you would have 3e5x. The previous
example is when A = 1.) Prove that

gÕ(x) = Bg(x).
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Application 7.1.5. This kind of behavior is incredibly important for modeling.
For example, how fast is a population growing? In ideal circumstances, the more
individuals there are in a population, the faster we expect the population to grow.
Better yet, we might expect that the rate of population growth is proportional to the
population itself! (Note that “being proportional to” is a far more precise relationship
than “the bigger the population, the faster the growth”.)

That’s exactly what Exercise 7.1.6 tells us about g(x) = AeBx. We see that gÕ

is proportional to g (with proportional constant B). So for example, x could model
time, while g(x) could model the population at time x.

By the way, why might g(x) be a bad model for population growth? For what
kinds of situations might g(x) be a good model? In those situations, what might A
and B represent?

Exercise 7.1.6. Find the derivative of f(x) = 5x. Hints: Remember that 5 = eln 5,
remember the basic rules for dealing with exponents, and use the chain rule.

Exercise 7.1.7. Your friend is excited about the idea that f(x) could equal f Õ(x) and
looks for more examples that looks like ex. They try f(x) = 5x, and are disappointed
that f Õ(x) does not equal f(x).

Is it possible to find any number k—other than e—so that if f(x) = kx, then
f Õ(x) = f(x)?

Remark 7.1.8. Isn’t e special?
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Exercise 7.1.9. Now that you know the derivative of g(x) = ex, can you figure out
the derivative of f(x) = ln x?

Hint: What is g ¶ f? What if you try computing (g ¶ f)Õ using the chain rule,
too?
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7.2 Review of right inverses
Let f be a function. Here’s a question: Given a value of f , can we always determine
which x it came from?
Example 7.2.1. Here are some examples:

1. If f(x) = 3x, and if someone tells you that f takes the value 12, you know
exactly where: x must equal 4. In fact, in general, if f takes value y, you know
the original x is y/3.

2. If f(x) = 2x, and if someone tells you that f takes the value 8, you know
exactly where: x must equal 3. In fact, in general, if f takes value y, you know
f does so at log2 y.

3. If f(x) = x2, and if someone tells you that f takes the value 4, you don’t

know exactly where: x could equal 2 or -2. However, if you restrict yourself to
looking only for positive values of x, then if f takes value y, you know that the
original x is Ô

y.
Below is a visual way to think about this process. Drawn is the graph of f . Given

a value y, can you figure out which value of x satisfies the equation f(x) = y? If so,
that means that the coordinate x now becomes a function of y—you input y, and
you output x—and we can call this function g.

y

x = g(y)

Warning 7.2.2. While we were diligent about drawing g as a function of y before,
from now on, we must now be comfortable realizing that letters are just letters, and
we don’t care if g takes inputs to be symbols that look like “x,” or symbols that look
like “y”; that is, g will often be treated as a function of x, too.
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Definition 7.2.3. Let f be a function. We say that a function g is a left inverse to
f if

(g ¶ f)(x) = x.

Put another way, g “remembers” the original value x that outputted f(x).
We also say that f is a right inverse to g. Put another way, f “knows” that if

g(something) = x, then something = f(x).

7.3 Derivatives of right inverses
It turns out that if we know the derivatives of a function g, then—if g has a right
inverse f—we can figure out the derivatives of the right inverse f .

Lemma 7.3.1. Let g be a function, and suppose that f is a right inverse to g,
defined on some open interval containing x. Suppose also that g is di�erentiable at
f(x), and that gÕ(f(x)) ”= 0. Then

f Õ(x) = 1
gÕ(f(x)) . (7.3.1)

That is, the derivative of f at x is computed by dividing 1 by the derivative of g at

f(x).

Proof. Let’s look at the following string of equalities:

1 = (x)Õ (7.3.2)
= (g ¶ f)Õ. (7.3.3)

The first equality is our knowledge of the derivative of the function x. The next
equality is using the hypothesis that g is a right inverse to f , so that f ¶ g = x.

In total, what this string of equalities says is that the function on the righthand
side is equal to the (constant!) function on the lefthand side. So let’s evaluate at
some point x. We have

1 = (g ¶ f)Õ(x) = gÕ(f(x)) · f Õ(x).

We can divide both sides by gÕ(f(x)) so long as this number isn’t zero; so we find:

1
gÕ(f(x)) = f Õ(x) when gÕ(f(x)) ”= 0.

This is what we wanted.
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Example 7.3.2. f = ln(x) is a right inverse to g(x) = ex. This is because

g ¶ f(x) = eln x = x.

We know the derivative of g(x) = ex, so we can use the lemma to find the derivative
of f(x) = ln(x)! Let’s try:

(ln(x))Õ = f Õ(x) (7.3.4)

= 1
gÕ(f(x)) (7.3.5)

= 1
ef(x) (7.3.6)

= 1
eln(x) (7.3.7)

= 1
x

. (7.3.8)

. The first equality is by definition of f . The next equality is using Lemma 7.3.1.
The rest is just plugging in our knowledge of gÕ and ln.

7.4 The derivative of natural log
The example from the last page is important, so let’s record this as a theorem. (You
will be expected to know this:)

Theorem 7.4.1 (The derivative of ln). The derivative of ln is “one over x.” That
is,

d

dx
ln(x) = 1

x
.
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7.5 For next lecture
You should be comfortable finding derivatives of functions involves ex and ln. For
example, you should be able to find f Õ for each of the following functions f :

(a) f(x) = ex

(b) f(x) = e3x

(c) f(x) = e3x+2

(d) f(x) = 3ex

(e) f(x) = 5x

(f) f(x) = 53x

(g) f(x) = ln(x)

(h) f(x) = ln(3x)

(i) f(x) = ln(x + 3)


