
EXERCISES IN CATEGORIES

Warning 0.0.1. Often, people define a category only by its objects, or a
functor only by its objects. (Example: Let Grp be the category of groups,
and let Grp→ Grp be the functor sending any group to its abelianization.)
This, strictly speaking, is not enough to determine a category or a functor.
It is implicitly understood that there is a clear/natural/do-able definition
of what the morphisms of the category are, or what the functor ought to
do on morphisms.

Be warned that many first-timers make the mistake of defining a functor
only on objects and realizing that there’s no way to actually construct a
functor (i.e., to define how their assignment is compatible with morphisms).

1. Algebraic notions encoded in categories

Suppose that C is a category such that, for every pair of objects X,Y ∈
Ob C, the set hom(X,Y ) has been endowed with the structure of an abelian
group. Moreover, suppose that the composition map hom(X,Y )×hom(Y,Z)→
hom(X,Z) is Z-linear in each variable. (The technical term is that C is en-
riched in abelian groups.)

1.1. Show that for any X ∈ Ob C, hom(X,X) is a (not necessarily com-
mutative) unital ring.

1.2. Show that for any pair X,Y ∈ Ob C, hom(X,Y ) is a bimodule over
hom(X,X) and hom(Y, Y ). More specifically, hom(X,Y ) is a left module
over hom(X,X) and a right module over hom(Y, Y ), and these module
actions commute.

2. Merging combinatorial definitions with important
algebraic notions

2.1. Commutative diagrams via linear posets. Let [k] = {0 < 1 <
. . . < k} be the linear poset with k + 1 elements. Recall you can consider
[k] itself a category with k + 1 objects, with hom(i, j) = ∗ when i ≤ j, and
hom(i, j) = ∅ otherwise. Show that for any category D, the following are
the same thing:

(1) a functor [k]→ D
(2) a choice of commutative diagram in D in the shape of a k-simplex.
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(3) a choice of sequence of objects Xi, i = 0, . . . , k, and of composable
morphisms, f01, . . . , f(k−1)k, where fij : Xi → Xj .

Remark 2.1.1. Sometimes, a combinatorist or a topologist may refer to
[k] as the combinatorial k-simplex, or sometimes even a k-simplex.

2.2. Category of simplices and associative algebras. Here, simplices
show up in a very different way than above. Rings also show up in a very
different way from the previous problems. Do not rely on the previous
problems to do this one.

Let ∆s be the category where an object is a finite, non-empty, linearly
ordered poset, and where a morphism is a map of posets which is also a
surjection. (You can check that any object is a poset isomorphic to [k] for
some k ≥ 0. Also, recall that a map of posets is a function f : P → Q such
that p ≤ p′ =⇒ f(p) ≤ f(p′).

Let R be an associative ring. Show that R determines a functor

FR : ∆s → Ab

where Ab is the category of abelian groups, sending [0] to R.
(Hint: It may help to just think about the subcategory of ∆s only con-

sisting of objects of the form [0], [1], and [2].)

3. Natural transformations

Fix C,D two categories, and two functors F : C → D and G : C → D.
Definition. A natural transformation η from F to G is a choice of homo-

morphism ηX : F (X)→ G(X) for every X ∈ Ob C. This data must satisfy
the following property: For any f : X → Y in C, the diagram

F (X)
F (f) //

ηX

��

F (Y )

ηY

��
G(X)

G(f) // G(Y )

commutes.

3.1. You can compose natural transformations. Fix three functors
F,G,H from C to D. Convince yourself that if η is a natural transformation
from F to G, and if η′ is a natural transformation from G to H, then there
is a composition η′ ◦η which defines a natural transformation from F to H.

3.2. For a fixed functor, natural transformations to/from itself
are a monoid. If F = G = H, convince yourself that the set of natural
transformations forms an associative monoid with unit.
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3.3. For Sets. Let C be the category of sets, and let F = G be the identity
functor from C to C. Compute the set of all natural transformations of the
identity (i.e., from F to G).

3.4. For comm. rings. Do the same, when C is the category of commu-
tative unital rings.

4. Categories as invariants of objects you care about

One use of algebra is to translate a hard object into an algebraic object
(i.e., construct an invariant which is workable).

Here, we will see a baby version: How to take a group G and create
two different categories from it. We’ll see that each category has some
information about G.

4.1. Center of G. Let G be a group. Let C = GSets be the category of
left G-sets; that is, an object is a set X with left G-action. A morphism is
a map of G-sets, so a function f : X → X ′ such that gf(x) = f(gx) for all
g ∈ G, x ∈ X.

Show that the set of natural transformations of the identity functor can
be identified with the center of G. Make sure you check that this identifica-
tion respects composition (of natural transformations) and multiplication
(of elements of G).

4.2. Center of k[G]. (This is more involved.) Fix a field k. Let G be a
group. Let C = GMod be the category of left G-modules over k. That
is, an object is a k-vector space with a k-linear G action—put another
way, an object is a k-vector space V equipped with a group homomorphism
G→ Autk(V ). Morphisms are k-linear maps V → V ′ respecting the group
action.

Show that the set of natural transformations of the identity functor can
be identified with the set of class functions of G. As a vector space, this is
a vector space generated by the set of conjugacy classes of G. It may help
to identify the class functions as the center of the group ring k[G].

Remark 4.2.1. Note that “natural transformation” only knows about the
category C, and does not know that the category a priori came from a
group G. So a purely categorical invariant (natural transformation of the
identity) recovers something about the group (center, or class functions).

5. Morita invariance

This section shows that the invariants are not always so strong, but
define an interesting equivalence relation on rings. First, let’s define the
notion of an equivalence of categories:
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Definition 5.0.1. Let f : X → Y be a morphism in a category C. We say
that f is an isomorphism if there exists g : Y → X for which fg = idY and
gf = idX . We say two objects are isomorphic if they admit an isomorphism
between them.

Definition 5.0.2. Let C and D be categories. We say a functor F : C → D
is an equivalence of categories if:

(1) For everyX,Y ∈ Ob C, the function F : hom(X,Y )→ hom(F (X), F (Y ))
is a bijection.

(2) For every object Z ∈ ObD, Z is isomorphic to some object of the
form F (X).

Here, we take a ring R, and produce a category as an invariant.

Definition 5.0.3. Fix a field k, and fix a unital (possibly non-commutative)
k-algebra R. (This is a fancy terminology for a ring R equipped with a ring
homomorphism k → R.) We let RMod denote the category of left R-
modules which are k-linear. That is, an object is a k-vector space equipped
with an R-module structure, and a morphism is a k-linear map respecting
the R action.

5.1. Matrix rings are Morita equivalent. Let m,n be two integers ≥ 1.
Let Rm be the ring of m×m matrices with entries in k. Likewise for Rn.

Show that the categories RmMod and RnMod are equivalent.

Remark 5.1.1. Two rings R,S such that RMod and SMod are equivalent
are called Morita equivalent.

5.2. Centers of rings are Morita invariant. Show that if two rings do
not have isomorphic centers, then they are not Morita equivalent. (Hint:
Natural transformations of the identity.)

6. Some constructions

6.1. Product posets. Let P and Q be posets. How would you define a
poset structure on P ×Q? Define one that’s “functorial,” in the sense that
if P → P ′ and Q→ Q′ are maps of posets, then your construction induces
a map of posets P ×Q→ P ′ ×Q′.

6.2. Product categories. Let C and D be categories. Convince yourself
that there’s a category called C × D, where

(1) Ob(C × D) = Ob C ×ObD, and
(2) ForX,X ′ ∈ Ob C and Y, Y ′ ∈ ObD, we have hom((X,Y ), (X ′, Y ′)) =

hom(X,X ′)× hom(Y, Y ′).
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6.3. Product posets again. Let Poset be the category of posets—an
object is a poset, and a morphism is a map of posets (a function f : P → P ′

such that p ≤ q =⇒ f(p) ≤ f(q)). Show that your construction of product
posets defines a functor from Poset× Poset to Poset.

6.4. 1 times 1. Fix a category D, and let [1] = {0 < 1} be the usual poset.
What does a functor [1]× [1]→ D encode?

6.5. Opposites. Let C be a category. Then define a new category Cop by
the following:

(1) Ob Cop = Ob C.
(2) homCop(X,Y ) = homC(Y,X). (Here, the subscript indicates in

which category we are considering morphisms. In English: The set
of morphisms from X to Y in Cop is the set of morphisms from X
to Y in C.)

(3) I leave to you to define the composition.

Show that Cop is indeed a category.

6.6. Contravariant functors. A “contravariant funtor from C to D” is a
functor F : Cop → D.

Convince yourself that the assignment G 7→ GSets is a contravariant
functor from Grp to Cat—i.e., from the category of groups (and group
homomorphisms) to the category of categories (and functors).

6.7. Categories of functors. Fix C,D two categories, and let Fun(C,D)
be the following category:

(1) An object is a functor F : C → D,
(2) A morphism from F to F ′ is a natural transformation.

Convince yourself that Fun(C,D) is a category.

7. Some tests

7.1. Units. Let Ring be the category of (possibly non-commutative) unital
rings, and Grp the category of groups. Consider the assignment which sends
any unital ring R to its group of units R×. Can this be made into a functor
Ring → Grp? How about Ringop → Grp?

7.2. Idempotents. Let C be the category with one object, which has ex-
actly two morphisms: id and f , with composition defined by f2 = f . For
a fixed field k, construct/define a category whose objects are pairs (V, V0)
where V is a finite-dimensional k-vector space and V0 is a subspace. (What
are the morphisms?) Exhibit an equivalence between your category, and

the functor category Fun(C, V ectfdk ) where V ectfdk is the category of finite-
dimensional k vector spaces.
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7.3. Abelianize. Let Ab : Grp → Grp be the functor that sends any
group to its abelianization. (You should check that this is a functor—i.e.,
how is it defined on morphisms?) Can you compute the monoid of natural
transformations from Ab to itself?

7.4. Equivalences. Show that F : C → D is an equivalence of categories
if and only if there exists a functor G : D → C, together with natural
isomorphisms F ◦G ∼= idD and G ◦ F ∼= idC . (A natural isomorphism is a
natural transformation where every ηX is an isomorphism.)
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