Lecture 35: Hadamaard’s Theorem and Jacobi Fields

Last time I stated:

Theorem 35.1. Let (M,g) be a complete Riemannian manifold. Assume
that for every p € M and for every z,y € T, M, we have

K(z,y) <0.
Then for any p € M, the exponential map
exp, : I,M — M

is a covering map.

1. Jacobi fields—surfaces from families of tangent vectors

Last time I also asked you to consider the following set-up: Let w :
(—e,e) = T,M be a family of tangent vectors. Then for every tangent vector
w(s), we can consider the geodesic at p with tangent vector w(s). This defines
a map

f (=€) x(a,b) = M, (5,1) = Yu(s)(t) = exp,(tw(s)).
Fixing s = 0, note that f(0,¢) = 7(t) is a geodesic, and there is a vector field

0

a5

(0,¢)

which is a section of v*T'M—e.g., a smooth map
J :(a,b) — ~*TM.

Proposition 35.2. Let
0

" s
Then J satisfies the differential equation

Va Vo, J = Q(¥(t), J())¥(t).

J(#) f.

(0,¢)
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Chit-chat 35.3. As a consequence, the acceleration of J is determined com-
pletely by the curvature’s affect on the velocity of the geodesic and the value
of J.

Definition 35.4 (Jacobi fields). Let 7 be a geodesic. Then any vector field
along 7 satisfying the above differential equation is called a Jacob: field.

Remark 35.5. When confronted with an expression like
\V4 XY or \V4 XVY

there are only two ways to swap the order of the differentiation: Using the
fact that one has a torsion-free connection, so

VxY =VyX + [X,Y]
or by using the definition of the curvature tensor:
VxVy =VyVyx + V[ij] + Q(X, Y)

Why is this “swapping?” For instance, in the latter equation, we have replaced
the operation of taking the covariant derivative in the Y direction, then in the
X direction, by an expression involving covariant derivatives in the opposite
order (along with other terms, of course).

Remark 35.6. Finally, since 0y, d, are coordinate vector fields, we have

[857 8,5] — 0

PROOF. First note that f(0,t) is a geodesic, so we have

of
Vo = 0.

To be precise, the above equation is an equation taking place in the space of
sections of y*T'M—one could equivalently write it as

(V)30 =0,

Since Vai% is constant, we also have

0
Vo, Va, 8_{ =
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Now we play the “swapping vector fields” game:

of of of of
0= VaSVatE = Vatvtasa + v[as@t]a + Q(@s, 315)5
- of  _ of of
= Vatvasa + VOE + (05, 3t)§
- of of
= Vy, Vo, ot +Q(85,8t) N
0 0
= VQtV8ta—£ + Vat [075, 8S]f —|— Q(@S, 8t>a—{

af of
= Vs, Vo, — + Q0s, 0) =.
oV T 0,
Using the fact that €2 is a 2-form (so swapping the order of the vector fields
results in a sign change) we arrive at

of

0
VQtV@E — Q((?t, @5) f

E.
This is an equation in the pullback bundle v*T'M. Expressing the above as a
differential equation taking place in T'M, we have

VLV d(s) = Q3. (1)

2. Singularities of the exponential map

Now, to prove exp, is a covering map, let’s first prove it’s a local diffeo-
morphism. Which is to say we need to prove that the derivative is nowhere
singular.

Lemma 35.7. Let w € T,M be a point at which T"exp, |» has non-trivial
kernel. If w' # 0 € T,,(T,M) is in the kernel, then there exists a Jacobi field
J along the geodesic 7, such that

(1) J(0) = J(1) =0

(2) J is non-zero somewhere.

PROOF. Choose any path w(s) inside T,M such that w(0) = w and % =
w’. As before, consider the map

f(s,1) = exp,(tw(s)) = Veu(s) (1) = Yu(s) (£)-

Then we know that J(t) := g—ﬁ is a Jacobi field. Note that at ¢t =0, f(s,0) is

a constant map, so its s-derivative is zero. Also note that at ¢ = 1, we have
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that
0

= 8_ f
S1(0,1)

= T exp, |0 yw’

J(1)

= T exp,, [’
=0.
Moreover, J is not everywhere zero—J(t) is given by
J(t) = T exp,, |t (o) (tw")

while exp,, is a diffeomorphism near the origin—hence for ¢ positive and small
enough, the above must be non-zero since w’ is non-zero. 0

Proposition 35.8. Assume that (M,g) is a Riemannian manifold whose
sectional curvature always satisfies

K(z,y) <0

for any x,y € T,M for any p € M. Then exp, is a local diffeomorphism for
any P e M.

ProOF. We claim that under the curvature hypothesis of this proposition,
the function
1T = (J(8), J(1)) : (a,b) = Rxg
is concave up (i.e., has everywhere non-negative second derivative). If so, then
J(0) = J(1) = 0 implies that J(t) = 0 for all £. Hence the Lemma above tells
us that there could be no singularities in exp.
To prove concave-up-ness, observe:
d? d
—(J(t), J(t)) = —2(Vy,J(t), J(t
I, T(0) = Z2(Va (1), T (1)

= 2(Va, Vo, J (1), J (1)) +2(Va, J (1), Vo, J (1))

By the Jacobi field condition, the acceleration term is replaced by a multiple
of the sectional curvature—explicitly, since

o e QU000 )
KOO = 1 1pRE = (0,507

we have
2

%(J(t), J(6)) =2 (IO = (J(), 7)) (=K (5(t), J(1)) + 2(Va, J(t), Vo, (t)).

The righthand side is a sum of two non-negative terms thanks to the curvature
hypothesis, and we are finished. 0
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