
Lecture 35: Hadamaard’s Theorem and Jacobi Fields

Last time I stated:

Theorem 35.1. Let (M, g) be a complete Riemannian manifold. Assume
that for every p ∈ M and for every x, y ∈ TpM , we have

K(x, y) ≤ 0.

Then for any p ∈ M , the exponential map

exp
p
: TpM → M

is a covering map.

1. Jacobi fields—surfaces from families of tangent vectors

Last time I also asked you to consider the following set-up: Let w :
(−�, �) → TpM be a family of tangent vectors. Then for every tangent vector
w(s), we can consider the geodesic at p with tangent vector w(s). This defines
a map

f : (−�, �)× (a, b) → M, (s, t) �→ γw(s)(t) = exp
p
(tw(s)).

Fixing s = 0, note that f(0, t) = γ(t) is a geodesic, and there is a vector field

∂

∂s

����
(0,t)

f

which is a section of γ∗TM—e.g., a smooth map

J : (a, b) → γ∗TM.

Proposition 35.2. Let

J(t) =
∂

∂s

����
(0,t)

f.

Then J satisfies the differential equation

∇∂t∇∂tJ = Ω(γ̇(t), J(t))γ̇(t).

117



Chit-chat 35.3. As a consequence, the acceleration of J is determined com-
pletely by the curvature’s affect on the velocity of the geodesic and the value
of J .

Definition 35.4 (Jacobi fields). Let γ be a geodesic. Then any vector field
along γ satisfying the above differential equation is called a Jacobi field.

Remark 35.5. When confronted with an expression like

∇XY or ∇X∇Y

there are only two ways to swap the order of the differentiation: Using the
fact that one has a torsion-free connection, so

∇XY = ∇YX + [X, Y ]

or by using the definition of the curvature tensor:

∇X∇Y = ∇Y∇X +∇[X,Y ] + Ω(X, Y ).

Why is this “swapping?” For instance, in the latter equation, we have replaced
the operation of taking the covariant derivative in the Y direction, then in the
X direction, by an expression involving covariant derivatives in the opposite
order (along with other terms, of course).

Remark 35.6. Finally, since ∂s, ∂t are coordinate vector fields, we have

[∂s, ∂t] = 0.

Proof. First note that f(0, t) is a geodesic, so we have

∇∂t

∂f

∂t
= 0.

To be precise, the above equation is an equation taking place in the space of
sections of γ∗TM—one could equivalently write it as

(γ∗
∇) ∂

∂t

γ̇(t) = 0.

Since ∇∂t

∂f

∂t
is constant, we also have

∇∂s∇∂t

∂f

∂t
= 0.
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Now we play the “swapping vector fields” game:

0 = ∇∂s∇∂t

∂f

∂t
= ∇∂t∇∂s

∂f

∂t
+∇[∂s,∂t]

∂f

∂t
+ Ω(∂s, ∂t)

∂f

∂t

= ∇∂t∇∂s

∂f

∂t
+∇0

∂f

∂t
+ Ω(∂s, ∂t)

∂f

∂t

= ∇∂t∇∂s

∂f

∂t
+ Ω(∂s, ∂t)

∂f

∂t

= ∇∂t∇∂t

∂f

∂s
+∇∂t [∂t, ∂s]f + Ω(∂s, ∂t)

∂f

∂t

= ∇∂t∇∂t

∂f

∂s
+ Ω(∂s, ∂t)

∂f

∂t
.

Using the fact that Ω is a 2-form (so swapping the order of the vector fields
results in a sign change) we arrive at

∇∂t∇∂t

∂f

∂s
= Ω(∂t, ∂s)

∂f

∂t
.

This is an equation in the pullback bundle γ∗TM . Expressing the above as a
differential equation taking place in TM , we have

∇γ̇∇γ̇J(s) = Ω(γ̇, J(t))γ̇.

�

2. Singularities of the exponential map

Now, to prove exp
p
is a covering map, let’s first prove it’s a local diffeo-

morphism. Which is to say we need to prove that the derivative is nowhere
singular.

Lemma 35.7. Let w ∈ TpM be a point at which T exp
p
|w has non-trivial

kernel. If w� �= 0 ∈ Tw(TpM) is in the kernel, then there exists a Jacobi field
J along the geodesic γw such that

(1) J(0) = J(1) = 0
(2) J is non-zero somewhere.

Proof. Choose any path w(s) inside TpM such that w(0) = w and dw

dt
=

w�. As before, consider the map

f(s, t) = exp
p
(tw(s)) = γtw(s)(1) = γw(s)(t).

Then we know that J(t) := ∂f

∂s
is a Jacobi field. Note that at t = 0, f(s, 0) is

a constant map, so its s-derivative is zero. Also note that at t = 1, we have
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that

J(1) =
∂

∂s

����
(0,1)

f

= T exp
p
|f(0,1)w

�

= T exp
p
|ww

�

= 0.

Moreover, J is not everywhere zero–J(t) is given by

J(t) = T exp
p
|tw(0)(tw

�)

while exp
p
is a diffeomorphism near the origin—hence for t positive and small

enough, the above must be non-zero since w� is non-zero. �

Proposition 35.8. Assume that (M, g) is a Riemannian manifold whose
sectional curvature always satisfies

K(x, y) ≤ 0

for any x, y ∈ TpM for any p ∈ M . Then exp
p
is a local diffeomorphism for

any P ∈ M .

Proof. We claim that under the curvature hypothesis of this proposition,
the function

||J(t)||2 = �J(t), J(t)� : (a, b) → R≥0

is concave up (i.e., has everywhere non-negative second derivative). If so, then
J(0) = J(1) = 0 implies that J(t) = 0 for all t. Hence the Lemma above tells
us that there could be no singularities in exp.

To prove concave-up-ness, observe:

d2

dt
�J(t), J(t)� =

d

dt
2�∇∂tJ(t), J(t)�

= 2�∇∂t∇∂tJ(t), J(t)�+ 2�∇∂tJ(t),∇∂tJ(t)�.

By the Jacobi field condition, the acceleration term is replaced by a multiple
of the sectional curvature—explicitly, since

K(γ̇(t), J(t)) =
(Ω(J(t), γ̇(t))γ̇(t), J(t))

|J(t)|2|γ̇|2 − (J(t), γ̇(t))2

we have
d2

dt
�J(t), J(t)� = 2

�
|J(t)|2|γ̇|2 − (J(t), γ̇(t))2

�
(−K(γ̇(t), J(t))) + 2�∇∂tJ(t),∇∂tJ(t)�.

The righthand side is a sum of two non-negative terms thanks to the curvature
hypothesis, and we are finished. �
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