
Lecture 34: Hadamaard’s Theorem and Covering spaces

In the next few lectures, we’ll prove the following statement:

Theorem 34.1. Let (M, g) be a complete Riemannian manifold. Assume
that for every p ∈ M and for every x, y ∈ TpM , we have

K(x, y) ≤ 0.

Then for any p ∈ M , the exponential map

exp
p
: TpM → M

is a local diffeomorphism, and a covering map.

1. Complete Riemannian manifolds

Recall that a connected Riemannian manifold (M, g) is complete if the
geodesic equation has a solution for all time t. This precludes examples such
as R2 − {0} with the standard Euclidean metric.

2. Covering spaces

This, not everybody is familiar with, so let me give a quick introduction
to covering spaces.

Definition 34.2. Let p : M̃ → M be a continuous map between topological
spaces. p is said to be a covering map if

(1) p is a local homeomorphism, and
(2) p is evenly covered—that is, for every x ∈ M , there exists a neighbor-

hood U ⊂ M so that p−1(U) is a disjoint union of spaces Ũα for which
p|

Ũα
is a homeomorphism onto U .

Example 34.3. Here are some standard examples:

(1) The identity map M → M is a covering map.
(2) The obvious map M

�
. . .

�
M → M is a covering map.

(3) The exponential map t �→ exp(it) from R to S1 is a covering map.
First, it is clearly a local homeomorphism—a small enough open in-
terval in R is mapped homeomorphically onto an open interval in S1.
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As for the evenly covered property—if you choose a proper open in-
terval inside S1, then its preimage under the exponential map is a
disjoint union of open intervals in R, all homeomorphic to the open
interval in S1 via the exponential map.

Non-Example 34.4. The inclusion R2−{0} �→ R2 is not a covering map—
it is a local homeomorphism, but it is not even surjective, so does not satisfy
the evenly covered property. Or, the map R2

�
(R2 − {0}) → R2 is not a

covering map, though it is a local homeomorphism . The map is not evenly
covered at the origin of R2.

2.1. Some facts about covering spaces.

Proposition 34.5. Let p : M̃ → M be a covering map. Then for every
continuous path γ : [0, 1] → M and every point q̃ for which p(q̃) = γ(0), there
exists a unique path γ̃ : [0, 1] → M̃ for which pγ̃ = γ.

This is the path-lifting, or unique path-lifting, property. Moreover,

Proposition 34.6. If M is a manifold, then a local diffeomorphism p : M̃ →

M is evenly covered if and only if it satisfies the unique path-lifting property.

Example 34.7. A vector bundle p : E → M is not a covering space. For
instance, E and M are manifolds of different dimension, so there is no local
homeomorphism from one to the other. But vector bundles do have a (non-
unique) path-lifting: Any path inM , on you can lift to a path in E. (Cover the
path in M by trivializing neighborhoods—you can assume there are finitely
many by compactness of [0, 1].)

Theorem 34.8. Given any reasonable space M , there exists a space M̃ and
a continuous map p : M̃ → M such that

(1) M̃ is simply-connected—that is, so π1(M,x0) = 0 for all x0 ∈ M , and
(2) p is a covering map.

Moreover, p : M̃ → M is unique up to homeomorphism respecting the covering
map: If p� : M̃ � → M satisfies the properties above, there is a homeomorphism
f̃ making the following diagram commute:

M̃
f̃

��

p
���

��
��

��
� M̃ �

p
�

����
��

��
��

M
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Chit-chat 34.9. This M̃ is called the universal cover of M , and you should
think of it as a space that replaces M by one with no π1. The fundamen-
tal group is sometimes the most complicated part of a space, so removing it
simplifies matters greatly.

3. Higher homotopy groups

Just as based maps of loops into M form a group, based maps of spheres
into M form a group as well. Define

πn(M,x0) = {Maps (Sn, ∗) → (M,x0)}/homotopies fixing ∗.

What’s the group composition? Well, a map from Sn sending ∗ to x0 is the
same thing as a map from the n-cube In to M sending ∂In to x0. And you
can compose two such maps from In into M by gluing the maps along a face
on the boundary of In.

Chit-chat 34.10. The homotopy groups πn(M,x0) are in some sense the
mother of all invariants in homotopy theory. For example, we have:

Theorem 34.11 (Whitehead’s Theorem). If M and N are reasonable spaces
(CW complexes, for instance) and if f : M → N is a continuous map inducing
isomorphisms on πn for all n, then f admits a homotopy inverse. That is, M
and N are homotopy equivalent spaces.

Chit-chat 34.12. But the πn are notoriously difficult to compute—for in-
stance, we don’t know them for spheres.

Proposition 34.13. Let p : M̃ → M be a covering map. Then for any p
induces an isomorphism on πn for all n ≥ 2.

Chit-chat 34.14. This is proved easily using, for instance, the long exact
sequence for a fibration, or simply by using the unique path-lifting property.

4. Discussion of main theorem

So what are some consequences of the main theorem we stated in this
lecture (at the very beginning)?

Corollary 34.15 (Hadamaard’s Theorem). Let (M, g) be as in the hypoth-
esis above. If M is simply-connected, then M is diffeomorphic to RdimM .

Proof. If M is simply-connected, the identity map exhibits M as its own
universal cover. On the other hand, exp

p
: TpM → M exhibits TpM as

the universal cover. By uniqueness of universal cover, this means we have

115



a continuous inverse to exp
p
. Since exp

p
is also a local diffeomorphism, this

inverse map is also smooth—hence exp
p
is a diffeomorphism. �

Corollary 34.16. Let (M, g) be as in the hypothesis. Then all the higher
homotopy groups of M vanish.

Chit-chat 34.17. This puts a huge restriction on the spaces for which we
can put metrics with non-positive curvature. In fact, the easiest way to cook
up manifolds with constant curvature, for instance, is to mod out one good
example by properly discontinuous group actions.

5. Toward a proof

So let’s get started on the proof. We need some techniques.
Fix p ∈ M and consider a smooth map

w : (�, �) → TpM.

That is, a path of tangent vectors w(s). For each w(s), let’s consider the
geodesic from p with tangent vector w(s). This gives us a map

f : (�, �)× (a, b) → M, γw(s)(t)

where γw(s) is the geodesic in the direction w(s). Since

γw(t) = γtw(1) = exp
p
(tw)

one can write f as a composite of two maps:

(−�, �)× (a, b)
tw(s)

�� TpM
expp �� M.

Chit-chat 34.18. If we measure the derivative of f in the t direction, we just
get the velocity vectors of the geodesic. But if we measure it in the s direction,
we see how points in M are changed as we change the initial tangent vector of
a geodesic. At t = 0 you can see from the equation that the s derivative is zero,
but as time goes on, we can measure how quickly (or slowly) the geodesics γw(s)

deviate from one another. Moreover, this rate of change satisfies a differential
equation governed chiefly by curvature:

Proposition 34.19. Let

J(t) =
∂

∂s

����
(0,t)

f.

Then J satisfies the differential equation

∇∂t∇∂tJ = Ω(γ̇(t), J(t))γ̇(t).

We’ll get to a proof of this next lecture.
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