Lecture 34: Hadamaard's Theorem and Covering spaces

In the next few lectures, we'll prove the following statement:

Theorem 34.1. Let (M, g) be a complete Riemannian manifold. Assume that for every $p \in M$ and for every $x, y \in T_pM$, we have

$$K(x, y) \le 0.$$

Then for any $p \in M$, the exponential map

$$\exp_p: T_pM \to M$$

is a local diffeomorphism, and a covering map.

1. Complete Riemannian manifolds

Recall that a connected Riemannian manifold (M, g) is *complete* if the geodesic equation has a solution for all time t. This precludes examples such as $\mathbb{R}^2 - \{0\}$ with the standard Euclidean metric.

2. Covering spaces

This, not everybody is familiar with, so let me give a quick introduction to covering spaces.

Definition 34.2. Let $p: \tilde{M} \to M$ be a continuous map between topological spaces. p is said to be a *covering map* if

- (1) p is a local homeomorphism, and
- (2) p is evenly covered—that is, for every $x \in M$, there exists a neighborhood $U \subset M$ so that $p^{-1}(U)$ is a disjoint union of spaces \tilde{U}_{α} for which $p|_{\tilde{U}_{\alpha}}$ is a homeomorphism onto U.

Example 34.3. Here are some standard examples:

- (1) The identity map $M \to M$ is a covering map.
- (2) The obvious map $M \coprod \dots \coprod M \to M$ is a covering map.
- (3) The exponential map $t \mapsto \exp(it)$ from \mathbb{R} to S^1 is a covering map. First, it is clearly a local homeomorphism—a small enough open interval in \mathbb{R} is mapped homeomorphically onto an open interval in S^1 .

As for the evenly covered property—if you choose a proper open interval inside S^1 , then its preimage under the exponential map is a disjoint union of open intervals in \mathbb{R} , all homeomorphic to the open interval in S^1 via the exponential map.

Non-Example 34.4. The inclusion $\mathbb{R}^2 - \{0\} \hookrightarrow \mathbb{R}^2$ is not a covering map it is a local homeomorphism, but it is not even surjective, so does not satisfy the evenly covered property. Or, the map $\mathbb{R}^2 \coprod (\mathbb{R}^2 - \{0\}) \to \mathbb{R}^2$ is not a covering map, though it is a local homeomorphism. The map is not evenly covered at the origin of \mathbb{R}^2 .

2.1. Some facts about covering spaces.

Proposition 34.5. Let $p : \tilde{M} \to M$ be a covering map. Then for every continuous path $\gamma : [0, 1] \to M$ and every point \tilde{q} for which $p(\tilde{q}) = \gamma(0)$, there exists a unique path $\tilde{\gamma} : [0, 1] \to \tilde{M}$ for which $p\tilde{\gamma} = \gamma$.

This is the path-lifting, or unique path-lifting, property. Moreover,

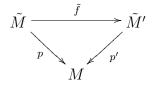
Proposition 34.6. If M is a manifold, then a local diffeomorphism $p: \tilde{M} \to M$ is evenly covered if and only if it satisfies the unique path-lifting property.

Example 34.7. A vector bundle $p: E \to M$ is *not* a covering space. For instance, E and M are manifolds of different dimension, so there is no local homeomorphism from one to the other. But vector bundles do have a (non-unique) path-lifting: Any path in M, on you can lift to a path in E. (Cover the path in M by trivializing neighborhoods—you can assume there are finitely many by compactness of [0, 1].)

Theorem 34.8. Given any reasonable space M, there exists a space \tilde{M} and a continuous map $p: \tilde{M} \to M$ such that

- (1) \tilde{M} is simply-connected—that is, so $\pi_1(M, x_0) = 0$ for all $x_0 \in M$, and
- (2) p is a covering map.

Moreover, $p: \tilde{M} \to M$ is unique up to homeomorphism respecting the covering map: If $p': \tilde{M}' \to M$ satisfies the properties above, there is a homeomorphism \tilde{f} making the following diagram commute:



Chit-chat 34.9. This M is called the *universal cover* of M, and you should think of it as a space that replaces M by one with no π_1 . The fundamental group is sometimes the most complicated part of a space, so removing it simplifies matters greatly.

3. Higher homotopy groups

Just as based maps of loops into M form a group, based maps of spheres into M form a group as well. Define

 $\pi_n(M, x_0) = \{ \text{Maps } (S^n, *) \to (M, x_0) \} / \text{homotopies fixing } *.$

What's the group composition? Well, a map from S^n sending * to x_0 is the same thing as a map from the *n*-cube I^n to M sending ∂I^n to x_0 . And you can compose two such maps from I^n into M by gluing the maps along a face on the boundary of I^n .

Chit-chat 34.10. The homotopy groups $\pi_n(M, x_0)$ are in some sense the mother of all invariants in homotopy theory. For example, we have:

Theorem 34.11 (Whitehead's Theorem). If M and N are reasonable spaces (CW complexes, for instance) and if $f: M \to N$ is a continuous map inducing isomorphisms on π_n for all n, then f admits a homotopy inverse. That is, M and N are homotopy equivalent spaces.

Chit-chat 34.12. But the π_n are notoriously difficult to compute—for instance, we don't know them for spheres.

Proposition 34.13. Let $p : \tilde{M} \to M$ be a covering map. Then for any p induces an isomorphism on π_n for all $n \ge 2$.

Chit-chat 34.14. This is proved easily using, for instance, the long exact sequence for a fibration, or simply by using the unique path-lifting property.

4. Discussion of main theorem

So what are some consequences of the main theorem we stated in this lecture (at the very beginning)?

Corollary 34.15 (Hadamaard's Theorem). Let (M, g) be as in the hypothesis above. If M is simply-connected, then M is diffeomorphic to $\mathbb{R}^{\dim M}$.

PROOF. If M is simply-connected, the identity map exhibits M as its own universal cover. On the other hand, $\exp_p : T_p M \to M$ exhibits $T_p M$ as the universal cover. By uniqueness of universal cover, this means we have a continuous inverse to \exp_p . Since \exp_p is also a local diffeomorphism, this inverse map is also smooth—hence \exp_p is a diffeomorphism.

Corollary 34.16. Let (M, g) be as in the hypothesis. Then all the higher homotopy groups of M vanish.

Chit-chat 34.17. This puts a huge restriction on the spaces for which we can put metrics with non-positive curvature. In fact, the easiest way to cook up manifolds with constant curvature, for instance, is to mod out one good example by properly discontinuous group actions.

5. Toward a proof

So let's get started on the proof. We need some techniques. Fix $p \in M$ and consider a smooth map

$$w: (\epsilon, \epsilon) \to T_p M$$

That is, a path of tangent vectors w(s). For each w(s), let's consider the geodesic from p with tangent vector w(s). This gives us a map

$$f: (\epsilon, \epsilon) \times (a, b) \to M, \qquad \gamma_{w(s)}(t)$$

where $\gamma_{w(s)}$ is the geodesic in the direction w(s). Since

$$\gamma_w(t) = \gamma_{tw}(1) = \exp_p(tw)$$

one can write f as a composite of two maps:

$$(-\epsilon,\epsilon) \times (a,b) \xrightarrow{tw(s)} T_p M \xrightarrow{\exp_p} M.$$

Chit-chat 34.18. If we measure the derivative of f in the t direction, we just get the velocity vectors of the geodesic. But if we measure it in the s direction, we see how points in M are changed as we change the initial tangent vector of a geodesic. At t = 0 you can see from the equation that the s derivative is zero, but as time goes on, we can measure how quickly (or slowly) the geodesics $\gamma_{w(s)}$ deviate from one another. Moreover, this rate of change satisfies a differential equation governed chiefly by curvature:

Proposition 34.19. Let

$$J(t) = \left. \frac{\partial}{\partial s} \right|_{(0,t)} f.$$

Then J satisfies the differential equation

$$\nabla_{\partial_t} \nabla_{\partial_t} J = \Omega(\dot{\gamma}(t), J(t)) \dot{\gamma}(t).$$

We'll get to a proof of this next lecture.