CHAPTER 27

Lecture 27: Proof of the Gauss-Bonnet-Chern Theorem.

This will be a sketch of a proof, and we will technically only prove it for
2-manifolds. But I hope indicates some geometric tools and techniques. All
the proofs will be sketches until the final computation.

Let dim M = 2k = n. Fix a triangulation K on M.

Here is the strategy we will use:

(1) We will construct a vector field Y on M—i.e., a section of T'M—whose
critical points (i.e., zeroes) are in one-to-one correspondence with the
simplices of K.

(2) We will then argue that there exists a connection for which VY = 0
outside of a small neighborhood U; of each critical point p;. As a
consequence, Pf(Qy) = 0 away from these U;.

(3) Using Stokes’s Theorem, we will calculate that fUi eu(Qy) = (—1)°
where ¢ is the dimension of the simplex corresponding to U;.

Lemma 27.1. For each triangulation K — M, there exists a vector field
Y’ on M such that the critical points of Y’ correspond to the barycenters of
each simplex. Moreover, about any critical point p that corresponds to the
barycenter of an i-simplex, there exists a local chart U so that

V' = (—2101 — ... — 2i0;) + 410;41 + . .. £,0,,.
Here, 0; is shorthand for %.

ProoF. This is essentially Morse theory. You construct a smooth function
on M step by step—the 0-simplices get value 0, the barycenter of the 1-simplex
get the value 1, the barycenter of an i-simplex gets the value i, et cetera. If
you look at the vector field given by the gradient of this function, you’ll find
that each barycenter is a critical point—if it’s the barycenter of an i-simplex,
it has an ¢-dimensional ball of directions in which the gradient is flowing down.

Then there is a standard argument from Morse theory that a generic func-
tion can be made to look like the function

—xy — .-+ ri g+l
and the above is its gradient. O
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Remark 27.2. What do I mean by a gradient? Well, if M C R" were
submanifold of R”, and f were a function on M, you know what the gradient
is. More generally, if we have a Riemannian manifold, we have an isomorphism
between T'M and T M given by the Riemannian metric—any vector v defines a
covector g(v, —). Hence given a function, we take the vector field corresponding
to df via the metric. This is called the gradient of f, and it satisfies the
equation

(grad(f), u) = df (u)

for every vector field wu.

Lemma 27.3. Fix a metric g on E. Let s be a nowhere vanishing section of
a vector bundle E. Then one can choose a compatible connection V on E so

that Vs = 0.

PROOF OF THEOREM. So at each p, let’s choose a nest of open sets U, C
V, C W,. We let W’ be the open set M — Up Vp. We can then guarantee the
following:

(1) Over W, we have no control over the metric, but VY = 0 and ||Y|| =

1.

(2) Over V, we have the standard Euclidean metric, with VY = 0 and
Y]] = 1.

(3) Over U, the metric is standard Euclidean, but we have no control over
[IY]I-

How do we do this? First, we choose a metric on W that is the standard
Euclidean metric; but when we patch with an arbitrary metric over W', this
may change the metric. But the metric only changes where W’ intersects W,
so it remains the standard Euclidean metric on V' and on U.

Inside U, we scale Y into Y'/||Y”|| along U so that outside of U, ||Y”|| = 1.
The trick as in the lemma allows us to choose a connection outside of U for
which VY’ = 0, though we don’t have control over VY” along U.

Now, note that the integral [, Pf(Qyv) = 0. Why? Well, we can extend
Y to an orthonormal frame locally, and the fact that VY = 0 means that
the connection matrix « has zeroes along the first column. Since « is skew-
symmetric, it also has zeroes along the first row. By the structure equation

D=da—aAN«

we also see that ) has zeroes along the first row and first column. Look-
ing at the Pfaffian formula, Pf(£2) must also be zero, since every product
(Q)a(1)a(2) ... (2)s2k-1)0(2k) has at least one term from either the first row
or first column. So in fact Pf(€2) = 0 as a differential form on W".
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Now we integrate the differential form P f(€2y) over V. Since we know the
integral of Pf(Q2yv) over W’ is zero, so fvp Pf(Qy) are the only contributions

So now we just need to prove

/V Pf(Qy) = (~1)2n

where 7 is the dimension of the simplex whose barycenter equals p. With this
lemma, the proof of the theorem is complete. O

Lemma 27.4.

| Pras) = -1z
v,

PROOF. We don’t have any control over {2y inside U, so we'll try to reduce
the problem to Stokes’s Theorem. Also, we’ll only perform this computation
for dim M = 2 today.

By the Morse Theory Lemma from above, we only need to study gradients
of the functions

2 _ .2 2, .2 2, .2
—Tp T Ty —x] + X, Ty + T3

By popular vote in class, we decided to study this second function. Then its
gradient, normalized, is given by
—1101 + 1202
NCER
We don’t know what it looks like inside U, but this is what it is inside V,

where the Riemannian metric is standard. Well, let’s find a connection such
that VY = 0. Writing

VO = a120s, VO, = an01,

r= /o + a3,
we have that

V(Y) = d( )81 -+ ( )041282 + d( )82 -+ ( )042181

Y —

and setting

Looking at the 0 term, for 1nstance, we conclude that
1 —1

— Ty —r 4+ x3r~ T1ToT
— Q9] — —2d.1'1 —2d1’2
r r r
so that we see
—XT9 il
Qo1 = —del + _deg
r r
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which is otherwise known as df. Hence oy = —df. And by the structure
equation, we conclude
ng = dOélg.
But the Pfaffian of a skew-symmetric matrix is just its 12 entry, so
Pf(le) = dOélg.

Hence integrate over a ball in V},, we conclude

/ dCYlg = / 12 — / —df = —27.
D2 St St

/v,, eu(Qy) = —1.

That is,
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