CHAPTER 27

Lecture 27: Proof of the Gauss-Bonnet-Chern Theorem.

This will be a sketch of a proof, and we will technically only prove it for 2-manifolds. But I hope indicates some geometric tools and techniques. All the proofs will be sketches until the final computation.

Let $\operatorname{dim} M=2 k=n$. Fix a triangulation K on M.
Here is the strategy we will use:
(1) We will construct a vector field Y on M-i.e., a section of $T M$-whose critical points (i.e., zeroes) are in one-to-one correspondence with the simplices of K.
(2) We will then argue that there exists a connection for which $\nabla Y=0$ outside of a small neighborhood U_{i} of each critical point p_{i}. As a consequence, $\operatorname{Pf}\left(\Omega_{\nabla}\right)=0$ away from these U_{i}.
(3) Using Stokes's Theorem, we will calculate that $\int_{U_{i}} e u\left(\Omega_{\nabla}\right)=(-1)^{i}$ where i is the dimension of the simplex corresponding to U_{i}.

Lemma 27.1. For each triangulation $K \rightarrow M$, there exists a vector field Y^{\prime} on M such that the critical points of Y^{\prime} correspond to the barycenters of each simplex. Moreover, about any critical point p that corresponds to the barycenter of an i-simplex, there exists a local chart U so that

$$
Y^{\prime}=\left(-x_{1} \partial_{1}-\ldots-x_{i} \partial_{i}\right)+x_{i+1} \partial_{i+1}+\ldots x_{n} \partial_{n} .
$$

Here, ∂_{i} is shorthand for $\frac{\partial}{\partial x_{i}}$.
Proof. This is essentially Morse theory. You construct a smooth function on M step by step - the 0 -simplices get value 0 , the barycenter of the 1 -simplex get the value 1 , the barycenter of an i-simplex gets the value i, et cetera. If you look at the vector field given by the gradient of this function, you'll find that each barycenter is a critical point-if it's the barycenter of an i-simplex, it has an i-dimensional ball of directions in which the gradient is flowing down.

Then there is a standard argument from Morse theory that a generic function can be made to look like the function

$$
-x_{1}^{2}-\ldots-x_{i}^{2}+x_{i+1}^{2}+\ldots+x_{n}^{2}
$$

and the above is its gradient.

Remark 27.2. What do I mean by a gradient? Well, if $M \subset \mathbb{R}^{n}$ were submanifold of \mathbb{R}^{n}, and f were a function on M, you know what the gradient is. More generally, if we have a Riemannian manifold, we have an isomorphism between $T M$ and $T^{*} M$ given by the Riemannian metric - any vector v defines a covector $g(v,-)$. Hence given a function, we take the vector field corresponding to $d f$ via the metric. This is called the gradient of f, and it satisfies the equation

$$
(\operatorname{grad}(f), u)=d f(u)
$$

for every vector field u.
Lemma 27.3. Fix a metric g on E. Let s be a nowhere vanishing section of a vector bundle E. Then one can choose a compatible connection ∇ on E so that $\nabla s=0$.

Proof of Theorem. So at each p, let's choose a nest of open sets $U_{p} \subset$ $V_{p} \subset W_{p}$. We let W^{\prime} be the open set $M-\bigcup_{p} \overline{V_{p}}$. We can then guarantee the following:
(1) Over W, we have no control over the metric, but $\nabla Y=0$ and $\|Y\|=$ 1.
(2) Over V, we have the standard Euclidean metric, with $\nabla Y=0$ and $\|Y\|=1$
(3) Over U, the metric is standard Euclidean, but we have no control over $\|Y\|$.
How do we do this? First, we choose a metric on W that is the standard Euclidean metric; but when we patch with an arbitrary metric over W^{\prime}, this may change the metric. But the metric only changes where W^{\prime} intersects W, so it remains the standard Euclidean metric on V and on U.

Inside U, we scale Y^{\prime} into $Y^{\prime} /\left\|Y^{\prime}\right\|$ along U so that outside of $U,\left\|Y^{\prime}\right\|=1$. The trick as in the lemma allows us to choose a connection outside of U for which $\nabla Y^{\prime}=0$, though we don't have control over ∇Y^{\prime} along U.

Now, note that the integral $\int_{W^{\prime}} P f\left(\Omega_{\nabla}\right)=0$. Why? Well, we can extend Y to an orthonormal frame locally, and the fact that $\nabla Y=0$ means that the connection matrix α has zeroes along the first column. Since α is skewsymmetric, it also has zeroes along the first row. By the structure equation

$$
\Omega=d \alpha-\alpha \wedge \alpha
$$

we also see that Ω has zeroes along the first row and first column. Looking at the Pfaffian formula, $\operatorname{Pf}(\Omega)$ must also be zero, since every product $(\Omega) \sigma(1) \sigma(2) \ldots(\Omega)_{\sigma(2 k-1) \sigma(2 k)}$ has at least one term from either the first row or first column. So in fact $\operatorname{Pf}(\Omega)=0$ as a differential form on W^{\prime}.

Now we integrate the differential form $\operatorname{Pf}\left(\Omega_{\nabla}\right)$ over V. Since we know the integral of $\operatorname{Pf}\left(\Omega_{\nabla}\right)$ over W^{\prime} is zero, so $\int_{V_{p}} P f\left(\Omega_{\nabla}\right)$ are the only contributions to $\int_{M} P f\left(\Omega_{\nabla}\right)$.

So now we just need to prove

$$
\int_{V_{p}} P f\left(\Omega_{\nabla}\right)=(-1)^{i} 2 \pi
$$

where i is the dimension of the simplex whose barycenter equals p. With this lemma, the proof of the theorem is complete.

Lemma 27.4.

$$
\int_{V_{p}} \operatorname{Pf}\left(\Omega_{\nabla}\right)=(-1)^{i} 2 \pi
$$

Proof. We don't have any control over Ω_{∇} inside U_{p}, so we'll try to reduce the problem to Stokes's Theorem. Also, we'll only perform this computation for $\operatorname{dim} M=2$ today.

By the Morse Theory Lemma from above, we only need to study gradients of the functions

$$
-x_{1}^{2}-x_{2}^{2}, \quad-x_{1}^{2}+x_{2}^{2}, \quad x_{1}^{2}+x_{2}^{2}
$$

By popular vote in class, we decided to study this second function. Then its gradient, normalized, is given by

$$
Y=\frac{-x_{1} \partial_{1}+x_{2} \partial 2}{\sqrt{x_{1}^{2}+x_{2}^{2}}}
$$

We don't know what it looks like inside U_{p}, but this is what it is inside V_{p}, where the Riemannian metric is standard. Well, let's find a connection such that $\nabla Y=0$. Writing

$$
\nabla \partial_{1}=\alpha_{12} \partial_{2}, \quad \nabla \partial_{2}=\alpha_{21} \partial_{1}
$$

and setting

$$
r=\sqrt{x_{1}^{2}+x_{2}^{2}}
$$

we have that

$$
\nabla(Y)=d\left(\frac{-x_{1}}{r}\right) \partial_{1}+\left(\frac{-x_{1}}{r}\right) \alpha_{12} \partial_{2}+d\left(\frac{x_{2}}{r}\right) \partial_{2}+\left(\frac{x_{2}}{r}\right) \alpha_{21} \partial_{1}
$$

Looking at the ∂_{1} term, for instance, we conclude that

$$
\frac{-x_{2}}{r} \alpha_{21}=\frac{-r+x_{1}^{2} r^{-1}}{r^{2}} d x_{1}+\frac{x_{1} x_{2} r^{-1}}{r^{2}} d x_{2}
$$

so that we see

$$
\alpha_{21}=\frac{-x_{2}}{r^{2}} d x_{1}+\frac{x_{1}}{r^{2}} d x_{2}
$$

which is otherwise known as $d \theta$. Hence $\alpha_{12}=-d \theta$. And by the structure equation, we conclude

$$
\Omega_{12}=d \alpha_{12}
$$

But the Pfaffian of a skew-symmetric matrix is just its 12 entry, so

$$
\operatorname{Pf}\left(\Omega_{12}\right)=d \alpha_{12}
$$

Hence integrate over a ball in V_{p}, we conclude

$$
\int_{D^{2}} d \alpha_{12}=\int_{S^{1}} \alpha_{12}=\int_{S^{1}}-d \theta=-2 \pi .
$$

That is,

$$
\int_{V_{p}} e u\left(\Omega_{\nabla}\right)=-1
$$

