
CHAPTER 27

Lecture 27: Proof of the Gauss-Bonnet-Chern Theorem.

This will be a sketch of a proof, and we will technically only prove it for
2-manifolds. But I hope indicates some geometric tools and techniques. All
the proofs will be sketches until the final computation.

Let dimM = 2k = n. Fix a triangulation K on M .
Here is the strategy we will use:

(1) We will construct a vector field Y onM—i.e., a section of TM—whose
critical points (i.e., zeroes) are in one-to-one correspondence with the
simplices of K.

(2) We will then argue that there exists a connection for which ∇Y = 0
outside of a small neighborhood Ui of each critical point pi. As a
consequence, Pf(Ω∇) = 0 away from these Ui.

(3) Using Stokes’s Theorem, we will calculate that
�
Ui
eu(Ω∇) = (−1)i

where i is the dimension of the simplex corresponding to Ui.

Lemma 27.1. For each triangulation K → M , there exists a vector field
Y � on M such that the critical points of Y � correspond to the barycenters of
each simplex. Moreover, about any critical point p that corresponds to the
barycenter of an i-simplex, there exists a local chart U so that

Y � = (−x1∂1 − . . .− xi∂i) + xi+1∂i+1 + . . . xn∂n.

Here, ∂i is shorthand for ∂

∂xi
.

Proof. This is essentially Morse theory. You construct a smooth function
onM step by step—the 0-simplices get value 0, the barycenter of the 1-simplex
get the value 1, the barycenter of an i-simplex gets the value i, et cetera. If
you look at the vector field given by the gradient of this function, you’ll find
that each barycenter is a critical point—if it’s the barycenter of an i-simplex,
it has an i-dimensional ball of directions in which the gradient is flowing down.

Then there is a standard argument from Morse theory that a generic func-
tion can be made to look like the function

−x2
1 − . . .− x2

i
+ x2

i+1 + . . .+ x2
n

and the above is its gradient. �
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Remark 27.2. What do I mean by a gradient? Well, if M ⊂ Rn were
submanifold of Rn, and f were a function on M , you know what the gradient
is. More generally, if we have a Riemannian manifold, we have an isomorphism
between TM and T ∗M given by the Riemannian metric—any vector v defines a
covector g(v,−). Hence given a function, we take the vector field corresponding
to df via the metric. This is called the gradient of f , and it satisfies the
equation

(grad(f), u) = df(u)

for every vector field u.

Lemma 27.3. Fix a metric g on E. Let s be a nowhere vanishing section of
a vector bundle E. Then one can choose a compatible connection ∇ on E so
that ∇s = 0.

Proof of Theorem. So at each p, let’s choose a nest of open sets Up ⊂
Vp ⊂ Wp. We let W � be the open set M −

�
p
Vp. We can then guarantee the

following:

(1) Over W , we have no control over the metric, but ∇Y = 0 and ||Y || =
1.

(2) Over V , we have the standard Euclidean metric, with ∇Y = 0 and
||Y || = 1.

(3) Over U , the metric is standard Euclidean, but we have no control over
||Y ||.

How do we do this? First, we choose a metric on W that is the standard
Euclidean metric; but when we patch with an arbitrary metric over W �, this
may change the metric. But the metric only changes where W � intersects W ,
so it remains the standard Euclidean metric on V and on U .

Inside U , we scale Y � into Y �/||Y �|| along U so that outside of U , ||Y �|| = 1.
The trick as in the lemma allows us to choose a connection outside of U for
which ∇Y � = 0, though we don’t have control over ∇Y � along U .

Now, note that the integral
�
W � Pf(Ω∇) = 0. Why? Well, we can extend

Y to an orthonormal frame locally, and the fact that ∇Y = 0 means that
the connection matrix α has zeroes along the first column. Since α is skew-
symmetric, it also has zeroes along the first row. By the structure equation

Ω = dα− α ∧ α

we also see that Ω has zeroes along the first row and first column. Look-
ing at the Pfaffian formula, Pf(Ω) must also be zero, since every product
(Ω)σ(1)σ(2) . . . (Ω)σ(2k−1)σ(2k) has at least one term from either the first row
or first column. So in fact Pf(Ω) = 0 as a differential form on W �.
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Now we integrate the differential form Pf(Ω∇) over V . Since we know the
integral of Pf(Ω∇) over W � is zero, so

�
Vp
Pf(Ω∇) are the only contributions

to
�
M
Pf(Ω∇).

So now we just need to prove
�

Vp

Pf(Ω∇) = (−1)i2π

where i is the dimension of the simplex whose barycenter equals p. With this
lemma, the proof of the theorem is complete. �

Lemma 27.4. �

Vp

Pf(Ω∇) = (−1)i2π

Proof. We don’t have any control over Ω∇ inside Up, so we’ll try to reduce
the problem to Stokes’s Theorem. Also, we’ll only perform this computation
for dimM = 2 today.

By the Morse Theory Lemma from above, we only need to study gradients
of the functions

−x2
1 − x2

2, −x2
1 + x2

2, x2
1 + x2

2.

By popular vote in class, we decided to study this second function. Then its
gradient, normalized, is given by

Y =
−x1∂1 + x2∂2�

x2
1 + x2

2

.

We don’t know what it looks like inside Up, but this is what it is inside Vp,
where the Riemannian metric is standard. Well, let’s find a connection such
that ∇Y = 0. Writing

∇∂1 = α12∂2, ∇∂2 = α21∂1,

and setting

r =
�

x2
1 + x2

2,

we have that

∇(Y ) = d(
−x1

r
)∂1 + (

−x1

r
)α12∂2 + d(

x2

r
)∂2 + (

x2

r
)α21∂1

Looking at the ∂1 term, for instance, we conclude that

−x2

r
α21 =

−r + x2
1r

−1

r2
dx1 +

x1x2r−1

r2
dx2

so that we see

α21 =
−x2

r2
dx1 +

x1

r2
dx2
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which is otherwise known as dθ. Hence α12 = −dθ. And by the structure
equation, we conclude

Ω12 = dα12.

But the Pfaffian of a skew-symmetric matrix is just its 12 entry, so

Pf(Ω12) = dα12.

Hence integrate over a ball in Vp, we conclude
�

D2

dα12 =

�

S1

α12 =

�

S1

−dθ = −2π.

That is, �

Vp

eu(Ω∇) = −1.

�
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