Lecture 24/25: Riemannian metrics

An inner product on \mathbb{R}^{n} allows us to do the following: Given two curves intersecting at a point $x \in \mathbb{R}^{n}$, one can determine the angle between their tangents:

$$
\cos \theta=\langle u, v\rangle /|u||v|
$$

On a general manifold, we would again like to have an inner product on each $T_{p} M$. Then if two curves intersect at a point p, one can measure the angle between them. Of course, there are other geometric invariants that arise out of this structure.

1. Riemannian and Hermitian metrics

Definition 24.2. A Riemannian metric on a vector bundle E is a section

$$
g \in \Gamma(\operatorname{Hom}(E \otimes E, \mathbb{R}))
$$

such that g is symmetric and positive definite. A Riemannian manifold is a manifold together with a choice of Riemannian metric on its tangent bundle.

Chit-chat 24.3. A section of $\operatorname{Hom}(E \otimes E, \mathbb{R})$ is a smooth choice of a linear map

$$
g_{p}: E_{p} \otimes E_{p} \rightarrow \mathbb{R}
$$

at every point p. That g is symmetric means that for every $u, v \in E_{p}$, we have

$$
g_{p}(u, v)=g_{p}(v, u)
$$

That g is positive definite means that

$$
g_{p}(v, v) \geq 0
$$

for all $v \in E_{p}$, and equality holds if and only if $v=0 \in E_{p}$.
Chit-chat 24.4. As usual, one can try to understand g in local coordinates. If one chooses a trivializing set of linearly independent sections $\left\{s_{i}\right\}$, one obtains a matrix of functions

$$
g_{i j}=g_{p}\left(\left(s_{i}\right)_{p},\left(s_{j}\right)_{p}\right)
$$

By symmetry of g, this is a symmetric matrix.

Example 24.5. $T \mathbb{R}^{n}$ is trivial. Let $g_{i j}=\delta_{i j}$ be the constant matrix of functions, so that $g_{i j}(p)=I$ is the identity matrix for every point. Then on every fiber, g defines the usual inner product on $T_{p} \mathbb{R}^{n} \cong \mathbb{R}^{n}$.

Example 24.6. Let $j: M \rightarrow N$ be a smooth immersion and let h be a metric on N. Then one can define a Riemannian metric on $T M$ by setting

$$
g_{p}(u, v)=h_{j(p)}(T j(u), T j(v))
$$

We call this the induced or inherited metric. As an example, the standard sphere $j: S^{2} \hookrightarrow \mathbb{R}^{3}$ inherits a Riemannian metric from \mathbb{R}^{3} in this way.

Proposition 24.7. For any vector bundle E, a Riemannian metric exists.

Proof. Partitions of unity.
Definition 24.8. A Hermitian metric on a complex vector bundle E is a choice of Hermitian inner product g on each fiber E_{p}.

As with above, one can prove a Hermitian metric exists on any complex vector bundle E.

Definition 24.9. Two Riemannian manifolds (M, g) and (N, h) are isometric if there is a diffeomorphism $f: M \rightarrow N$ for which $g(u, v)=h(T u, T v)$.

Definition 24.10. Sections s_{i} are called orthonormal if

$$
g\left(s_{i}, s_{j}\right)=\delta_{i j} .
$$

If an orthonormal collection $\left\{s_{i}\right\}$ also spans E_{p} for every p, then we call $\left\{s_{i}\right\}$ an orthonormal frame.

Proposition 24.11. For any Riemannian metric on E, and for any $p \in M$, there exists a neighborhood U of p on which one can find an orthonormal frame of $\left.E\right|_{U}$. Likewise for Hermitian metrics on a complex vector bundle.

Warning 24.12. Let g be a Riemannian metric on M. The above proposition does not imply that one can find a coordinate chart for M on which g looks like the identity matrix. One can find sections of $T M$ for which this is true, but these sections are not induced by a coordinate chart $\mathbb{R}^{n} \rightarrow M$ in general. Indeed, when one can find orthonormal sections s_{i} such that $s_{i}=T f\left(\partial / \partial x_{i}\right)$ for some open embedding $f: U \hookrightarrow M$, we say that the metric is flat on $f(U)$.

2. Levi-Civita Connection and metric connections

Given two sections s_{1}, s_{2} of E, one can try to measure the rate of change of the function

$$
g\left(s_{1}, s_{2}\right)
$$

We say that a connection on E is compatible with g if

$$
d\left(g\left(s_{1}, s_{2}\right)\right)=g\left(\nabla s_{1}, s_{2}\right)+g\left(s_{1}, \nabla s_{2}\right)
$$

for all $s_{i} \in \Gamma(E)$. Note that this is an equality of 1-forms. The same equation defines the notion of compatibility of ∇ with a Hermitian connection, in the case that E is complex.

Put another way, for any pair $s_{i} \in \Gamma(E)$ and any vector field X, we must have

$$
X\left(g\left(s_{1}, s_{2}\right)\right)=g\left(\nabla_{X} s_{1}, s_{2}\right)+g\left(s_{1}, \nabla_{X} s_{2}\right) .
$$

When $E=T M$, we further say that ∇ is torsion-free if

$$
\nabla_{X} Y-\nabla_{Y} X=[X, Y]
$$

Proposition 24.13. For any Riemannian metric g on E, there exists some connection that is compatible with g. If $E=T M$, there is a unique connection which is both compatible with the metric and torsion-free.

Definition 24.14. This unique connection on $T M$ is called the Levi-Civita connection. For an arbitrary E, ∇ may not be unique, but is still called a metric connection.

3. Christoffel Symbols

Let ∇ be a connection on E. Given a local frame s_{i} and a local chart for the manifold, one can write

$$
\nabla s_{b}=\Gamma_{a b}^{c} d x_{a} \otimes s_{c} .
$$

Or, if one likes,

$$
\nabla_{\partial_{x_{a}}} s_{b}=\Gamma_{a b}^{c} s_{c}
$$

In the case $E=T M$, of course, a local chart for M induces a local frame s_{i} on $T M$, and one can write

$$
\nabla_{\partial_{x_{a}}} \partial_{x_{b}}=\Gamma_{a b} \partial_{x_{c}} .
$$

The $\Gamma_{a b}^{c}$ are called the Christoffel symbols for the connection ∇. If ∇ is torsionfree, we have that

$$
\Gamma_{a b}^{c}=\Gamma_{b a}^{c} .
$$

