Lecture 20: Pontrjagin classes

See the hand-written notes for the fact that the cohomology class [f(Qv)]
does not depend on the choice of connection. Now it’s time to investigate, and
give a name to, these cohomology classes.

Recall that we have defined invariant polynomials o; by the equation

det(I + tA) thoz

Once we have Riemannian metrics and Levi-Civita connections in hand,
we will be able to prove:

Lemma 18.4. If ¢ is odd, then for any connection,
[5:(Q2v)] = 0.
So we are only interested in those deRham forms obtained from even 1.

Definition 18.5. We define the kth Pontrajgin class p, of a vector bundle
E by the equation

det(1 + Q Zpk

Explicitly, we have

pi = (5ol 0)] € HIO).

Remark 18.6 (What’s with the 277).  You might wonder what the 27 is for.

There is always a point of tension here—do you learn algebraic topology
or differential geometry first? Well, using just algebraic topology (i.e., any
topological space, and not necessary a manifold) one can define the notion
of singular cohomology. The upshot is that for any topological space X, one
gets a sequence of abelian groups H°(X,Z), H'(X,Z) ... just like one gets a
sequence of R-vector spaces Hj,(M) for any manifold M.

Moreover, in topology, one can construct a classifying space BG—it’s some
wonderful, big space with a wonderful vector bundle on it so that every bundle
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on X is given by pulling back this wonderful vector bundle on BG. It’s a
beautiful idea—the data of a vector bundle on X can be replaced by a map to
BG.

Well, if you're pulling back bundles from BG, you may as well pull back
certain cohomology classes of BG along with it. These are the characteristic
cohomology classes associated to topological vector bundles.

So we have two parallel stories about cohomology and defining character-
istic classes, but the topological picture deals with abelian groups (there may
even be torsion) while our picture works over R. How to rectify this? Well, a
way to get a vector space out of an abelian group is by tonsuring with R. The
deRham theorem says that there is an isomorphism

HY(X;Z) @R = Hin(X).

Moreover, by some miracle, it turns out that the cohomology classes that we’ve
define using geometric methods match exactly with the topological character-
istic classes—thanks to the factors of 27 we’ve included.

Finally, we can repeat the construction of Pontrjagin classes—which were
defined for real vector bundles—for complex vector bundles.

Definition 18.7. A complex vector bundle of rank k is the data of:

(1) A smooth manifold £ and a smooth map £ — M
(2) The structure of a complex vector space on each fiber E,

such that, for every p € M, there is an open set U C M containing p and a
diffeomorphism @ : 771(U) — U x C* such that

(1) the diagram
U x CF Py 7 U) = Uyer Bo

N

commutes—that is, so that 7 = pry o &,—and
(2) the map E, — {z} x C* is a C-linear map for every z € U.

A section of a complex vector bundle is a smooth map s : M — E such that
Tos =1dy.

We can define connections, the curvature 2-form, and invariant polynomials
as before.

Definition 18.8. A connection on a complex vector bundle is a C-linear
map

V:I(E) = I(T"M ® E)
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such that the Leibniz rule
V(fs)=df @ s+ fVs

holds for any smooth map f : M — C—i.e., for any smooth complex function
on M.
We will have the exact same set of facts:
(1) There is a unique map D : T(T*M ® E) — ['(A*T*M ® E) extending
the Leibniz rule.
(2) The composition Q@ = D o V is a C°°(M; C)-linear map, so defines a
section of I'(End(E)).
(3) For any invariant polynomial f, f(€2) is closed.
(4) This cohomology class is independent of choice of connection.

So we get elements of H},(M;C) out of connections on complex vector

bundles.

Definition 18.9. We define the kth chern class of a complex vector bundle

E by the equation
k

det(I — 2%_9) => a(B).

These are a priori elements of Hj,(M;C), but we will be able to prove
that these are actually real cohomology classes once we talk about Hermitian
metrics on vector bundles.
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