CHAPTER 16

Curvature as a 2-form

The structure equation from last time shows that curvature can be written in local coordinates as

$$
\Omega=d \alpha-\alpha \wedge \alpha
$$

The term local coordinates is extremely important here. The matrix of 1-forms, or 1-form of matrices, α does not define a global 1-form of matrices. In fact, if you change the trivialization of the bundle, α will not transform as you'd expect a 1 -form to transform.

This is contrast to Ω :
Proposition 16.1. Ω defines a section of $\Omega^{2}(\operatorname{End}(E))$. That is, Ω is a differential 2-form taking values in the bundle of endomorphisms of E.

Proof. We will see soon that any $C^{\infty}(M)$-linear map $\Gamma(E) \rightarrow \Gamma(F)$ defines a section of the bundle $E^{\vee} \otimes F$. So if Ω defines such a map from $\Gamma(E)$ to $\Gamma\left(\Lambda^{2} T^{*} M \otimes E\right)$, it defines a section of

$$
E^{\vee} \otimes \Lambda^{2} T^{*} M \otimes E \cong \Lambda^{2} T^{*} M \otimes E^{\vee} \otimes E \cong \Lambda^{2} T^{*} M \otimes \operatorname{End}(E)
$$

That's the hard part. It's easy to see that Ω defines a $C^{\infty}(M)$-linear map:

$$
\begin{aligned}
D \circ \nabla(f s) & =D(d f \otimes s+f \nabla s) \\
& =d^{2} f \otimes s-d f \wedge \nabla(s)+d f \wedge \nabla s+f D \nabla s \\
& =f D \nabla s .
\end{aligned}
$$

Since we know what transition functions look like for $\operatorname{End}(E)$ - given transition functions for E-we have:

Corollary 16.2. In local coordinates, write $\Omega=\left(\Omega_{i j}\right)$ where each $\Omega_{i j}$ is a smooth 2-form. Let $g_{\alpha \beta}$ be the transition maps for local coordinates in another coordinate system. Then the matrix of 2 -forms Ω^{\prime} in this new coordinate system is

$$
\Omega^{\prime}=g_{\alpha \beta} \Omega g_{\alpha \beta}^{-1} .
$$

Remark 16.3. To be explicit, this means that Ω^{\prime} is a matrix of 2 -forms whose $i j$ th entry is given by the two-forms

$$
\left(g_{\alpha \beta} \wedge \Omega \wedge g_{\alpha \beta}^{-1}\right)_{i j}
$$

Even more explicitly: $g_{\alpha \beta}$ is a matrix of smooth functions, as is its inverse. Wedge product of functions (i.e., 0 -forms) is just multiplying by those functions, so we have $i j$ th entry of Ω^{\prime} given by the summation

$$
\sum_{l, m=1}^{k}\left(g_{\alpha \beta}\right)_{i l} \Omega_{l m}\left(g_{\alpha \beta}^{-1}\right)_{m j}=\sum_{l, m=1}^{k}\left(g_{\alpha \beta}\right)_{i l}\left(g_{\alpha \beta}^{-1}\right)_{m j} \Omega_{l m}
$$

Chit-chat 16.4. Since Ω is a 2 -form with values in $\operatorname{End}(E)$, we can think of Ω locally as a 2 -form with values in a $k \times k$ matrix. (k, as usual, the rank of E.) If we change a trivialization, we saw above that the entries of the $k \times k$ matrix by a conjugation. ${ }^{1}$

So suppose that we have a polynomial $f: M_{k \times k}(\mathbb{R}) \rightarrow \mathbb{R}$ which is invariant under conjugation. That is, so that $f(A)=f\left(B A B^{-1}\right)$ for any B invertible, and for any matrix A. Then any section of $\Omega^{2}(\operatorname{End}(E))$ defines a section of $\Omega^{2 \operatorname{deg} f}(\underline{\mathbb{R}})=\Omega^{2 \operatorname{deg} f}(M)$ by post-composing with f. In other words, every connection, together with an invariant polynomial, defines an element of $\Omega_{d R}^{2 \operatorname{deg} f}(M)$.

Next time, we'll investigate the space of all invariant polynomials. We'll see that

Theorem 16.5. For any invariant polynomial $f: M_{k \times k} \rightarrow \mathbb{R}, f(\Omega)$ is a closed form. Hence one obtains an element of $H^{2 \operatorname{deg} f}(M)$.

1. Some practice

Exercise 16.6. Show that the matrix of 1 -forms does not define a 1 -form with values in $\operatorname{End}(E)$.

Exercise 16.7. Convince yourself that any invariant polynomial really turns Ω into an honest differential form.

[^0]
[^0]: ${ }^{1}$ That that if we do not just change the trivialization, but also examine what the 2 -form looks like in two different charts of the atlas of M, Ω will also change according to the derivatives of the transition maps for the charts.

