CHAPTER 16

Curvature as a 2-form

The structure equation from last time shows that curvature can be written in local coordinates as

$$\Omega = d\alpha - \alpha \wedge \alpha.$$

The term *local coordinates* is extremely important here. The matrix of 1-forms, or 1-form of matrices, α does not define a global 1-form of matrices. In fact, if you change the trivialization of the bundle, α will not transform as you'd expect a 1-form to transform.

This is contrast to Ω :

Proposition 16.1. Ω defines a section of $\Omega^2(\text{End}(E))$. That is, Ω is a differential 2-form taking values in the bundle of endomorphisms of E.

PROOF. We will see soon that any $C^{\infty}(M)$ -linear map $\Gamma(E) \to \Gamma(F)$ defines a section of the bundle $E^{\vee} \otimes F$. So if Ω defines such a map from $\Gamma(E)$ to $\Gamma(\Lambda^2 T^*M \otimes E)$, it defines a section of

$$E^{\vee} \otimes \Lambda^2 T^* M \otimes E \cong \Lambda^2 T^* M \otimes E^{\vee} \otimes E \cong \Lambda^2 T^* M \otimes \operatorname{End}(E).$$

That's the hard part. It's easy to see that Ω defines a $C^{\infty}(M)$ -linear map:

$$D \circ \nabla(fs) = D(df \otimes s + f\nabla s)$$

= $d^2f \otimes s - df \wedge \nabla(s) + df \wedge \nabla s + fD\nabla s$
= $fD\nabla s.$

 \square

Since we know what transition functions look like for End(E)—given transition functions for E—we have:

Corollary 16.2. In local coordinates, write $\Omega = (\Omega_{ij})$ where each Ω_{ij} is a smooth 2-form. Let $g_{\alpha\beta}$ be the transition maps for local coordinates in another coordinate system. Then the matrix of 2-forms Ω' in this new coordinate system is

$$\Omega' = g_{\alpha\beta}\Omega g_{\alpha\beta}^{-1}.$$

Remark 16.3. To be explicit, this means that Ω' is a matrix of 2-forms whose *ij*th entry is given by the two-forms

$$(g_{\alpha\beta} \wedge \Omega \wedge g_{\alpha\beta}^{-1})_{ij}.$$

Even more explicitly: $g_{\alpha\beta}$ is a matrix of smooth functions, as is its inverse. Wedge product of functions (i.e., 0-forms) is just multiplying by those functions, so we have *ij*th entry of Ω' given by the summation

$$\sum_{l,m=1}^{k} (g_{\alpha\beta})_{il} \Omega_{lm} (g_{\alpha\beta}^{-1})_{mj} = \sum_{l,m=1}^{k} (g_{\alpha\beta})_{il} (g_{\alpha\beta}^{-1})_{mj} \Omega_{lm}$$

Chit-chat 16.4. Since Ω is a 2-form with values in End(E), we can think of Ω locally as a 2-form with values in a $k \times k$ matrix. (k, as usual, the rank of E.) If we change a trivialization, we saw above that the entries of the $k \times k$ matrix by a conjugation.¹

So suppose that we have a polynomial $f : M_{k \times k}(\mathbb{R}) \to \mathbb{R}$ which is *invariant* under conjugation. That is, so that $f(A) = f(BAB^{-1})$ for any B invertible, and for any matrix A. Then any section of $\Omega^2(\text{End}(E))$ defines a section of $\Omega^{2 \deg f}(\underline{\mathbb{R}}) = \Omega^{2 \deg f}(M)$ by post-composing with f. In other words, every connection, together with an invariant polynomial, defines an element of $\Omega^{2 \deg f}_{dR}(M)$.

Next time, we'll investigate the space of all invariant polynomials. We'll see that

Theorem 16.5. For any invariant polynomial $f : M_{k \times k} \to \mathbb{R}$, $f(\Omega)$ is a closed form. Hence one obtains an element of $H^{2 \deg f}(M)$.

1. Some practice

Exercise 16.6. Show that the matrix of 1-forms does not define a 1-form with values in End(E).

Exercise 16.7. Convince yourself that any invariant polynomial really turns Ω into an honest differential form.

¹That that if we do not just change the trivialization, but also examine what the 2-form looks like in two different charts of the atlas of M, Ω will also change according to the derivatives of the transition maps for the charts.