
CHAPTER 15

Curvature in local coordinates

For any ∇ on a smooth vector bundle E, we’ve defined an operator

D : Ωk(E) → Ωk+1(E)

by demanding the Leibniz rule:

D(α⊗ s) = dα⊗ s+ (−1)|α|α ∧∇(s).

We’ve seen that D ◦ ∇ = 0 if and only if D2 = 0 (hence, if and only if
(Ω∗(E), D) defines a cochain complex.)

Definition 15.1. The R-linear map

D ◦ ∇ : Γ(E) → Ω2(E)

is called the curvature of ∇.

1. Connections in local coordinates

Let’s see what everything looks like in local coordinates. Let U ⊂ M be
an open subset where E|U is trivial. Fix sections si : U → E|U , i = 1, . . . , k,
that are linearly independent. Then whatever ∇ does to each si, we define

∇(si) =
k�

j=1

αij ⊗ sj.

Here, each αij is a 1-form on U . You can consider the collection of them as a
k × k matrix with values in 1-forms.

2. Matrices with values in differential forms

Taking a step back: Given any ring R, it makes sense to talk about k ×
k matrices with entries in R. After all, addition of matrices only requires
addition of its entries, and multiplication of matrices only requires addition
and multiplication of entries.

Hence it makes sense to consider the ring of k× k matrices with entries in
the deRham algebra Ω∗(U) (or in Ω∗(M) for that matter).

To be completely explicit: Given two matrices

α ∈ Mk×k(Ω
l(U)), β ∈ Mk×k(Ω

l�(U)),
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one defines a matrix α ∧ β ∈ Mk×k(Ωl+l�(U)) by the formula

(α ∧ β)ij :=
k�

a=1

αik ∧ βkj.

One can also define a new matrix dα by applying the deRham differential entry
by entry:

(dα)ij := d(αij).

This will simplify many of our formulas in equations to come.

3. The structure equation

The composite function D ◦ ∇ : Ω0(E) → Ω2(E) can be written using a
2-form, just as we wrote the connection using 1-forms:

D ◦ ∇(si) =
k�

j=1

Ωij ⊗ sj.

Proposition 15.2 (The structure equation). If α is the matrix of 1-forms
corresponding to a connection in a local frame, then

Ω = dα− α ∧ α.

Proof.

D ◦ ∇(si) = D(
�

j

αij ⊗ sj)

=
�

j

�
dαij ⊗ sj + (−1)|αij |αij ∧∇(sj)

�

=
�

j

�
dαij ⊗ sj − αij ∧

k�

l=1

αjlsl

�

=
k�

j=1

�
dαij −

k�

l=1

αil ∧ αlj

�
⊗ sj

(1)

So writing things out entry by entry, we see

Ωij = (dα− α ∧ α)ij.

�
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Warning 15.3. Some books will write the structure equation as

Ω = dα + α ∧ α.

The reason for the sign error is in the convention for the Leibniz rule! The
difference is whether one considers sections of the bundle E ⊗ Ω∗(M), or
Ω∗(M) ⊗ E. The two bundles are isomorphic, of course, but the sign con-
vention in the Leibniz rule changes depending on the order in which you write
the tensor product. Indeed, in defining D, one can demand the rules

D(s⊗ α) = ∇(s) ∧ α + s⊗ dα (other books),

and
D(α⊗ s) = dα⊗ s+ (−1)|α|α ∧∇(s) (our convention).

This won’t cause us much trouble. But I wanted to alert you to this phenom-
enon.
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