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DIFFERENTIAL GEOMETRY; 
ITS PAST AND ITS FUTURE 

by SHIING-SHEN CHERN (*) 

A. Introduction. 

It was almost a century ago, in 1872, that Felix Klein formulated his Erlanger Pro-
gram. The idea of unifying the geometries under the group concept is simple and 
attractive and its applications in the derivation of different geometrical theorems 
from the same group-theoretic argument are usually of great elegance. This leads 
to the development of differential geometries of submanifolds in homogeneous (or 
Klein) spaces: conformai, affine, and projective differential geometries. The latter 
had in particular an energetic development in the twenties. 

It was also about a century ago that the greatest modern differential geometer 
Elie Cartan was born (on April 9, 1869). Among his contributions of a basic nature 
are his systematic use of the exterior calculus and his clarification of the global theory 
of Lie groups. Fiber spaces also find their origin in Cartan's work. 

Differential geometry is the study of geometry by the methods of infinitesimal calculus 
or analysis. Among mathematical disciplines it is probably the least understood (1). 
Many mathematicians feel there is no geometry beyond two and three dimensions. 
The advent into higher and even infinitely many dimensions does make the intuition 
unreliable and the dependence on algebra and analysis mandatory. The basis of 
algebra is the algebraic operations and the basis of analysis is the topological structure. 
I would like to surmise that the core of differential geometry is the Riemannian structure 
(in its broad sense). 

The main object of study in differential geometry is, at least for the moment, the 
differentiable manifolds, structures on the manifolds (Riemannian, complex, or other), 
and their admissible mappings. On a manifold the coordinates are valid only locally 
and do not have a geometrical meaning themselves. Historically the difficulty in 
achieving a proper understanding of this situation must have been tremendous (I 
wonder whether this was part of the reason which caused Hadamard to admit his 

(*) This paper was written when the author held a Research Professorship of the Miller 
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depended upon for rigorous arguments », Lectures on the Theory of Functions of a Complex 
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psychological difficulty in the mastery of Lie groups) (2). For technical purposes 
the Ricci calculus was a powerful tool, but it is inadequate for global problems. Global 
differential geometry, with the exception of a few isolated results, had to wait till 
algebraic topology and Lie groups have paved the way. 

Global differential geometry must be considered a young field. The notion of a 
differentiable manifold should have been in the minds of many mathematicians, but 
it was H. Whitney who found in 1936 a theorem to be proved: the imbedding theorem. 
In the case of the richer complex structure a definition of a Riemann surface by over-
lapping neighborhoods was given and the theory rigorously treated by H. Weyl in 
his famous book " Idee der Riemannschen Fläche, Göttingen, 1913 " (3), following 
which Caratheodory gave the first definition of a high-dimensional complex manifold. 
More general pseudo-group structures were treated by Veblen and J. H. C. Whitehead 
in 1932 [34]. Only special cases of the general theory, such as Riemannian, conformai, 
complex, foliated structures, etc. have been found significant. 

B. The development of some fundamental notions and tools. 

Perhaps the most far-reaching achievement in differential geometry in the last 
thirty years lies in its foundation. Not only are the notions clearly defined, but nota-
tions are devised to treat manifolds which could be infinite-dimensional. The notations 
are up to now on the diversive side and are thus at an experimental stage. We believe 
in the survival of the fittest. Important as these foundational works are, no mathe-
matical discipline can prosper without deeper study and simple challenging problems. 
We will comment briefly on a few fundamental developments in differential geometry 
and its related subjects, without endeavoring to make the list complete. 

(1) Lie Groups. — It is one of the happiest incidents in the history of mathematics 
that the structure of Lie groups can be so thoroughly analyzed. The existence of the 
five exceptional simple Lie groups makes a deep study necessary and leads to a better 
understanding. Even so the subject has unity and is so much simpler than (say) 
finite groups. The quotient spaces of Lie groups give a multitude of examples of 
manifolds which are easy to describe. They include the classically important spaces 
and form a reservoir on which new conjectures can be tested. 

(2) Fiber Spaces. — When a manifold has a differentiable structure, it can be locally 
linearized, giving rise to the tangent bundle and the associated tensor bundles. The 
first idea of a connection in a fiber bundle with a Lie group can be found in Cartan's 
" espaces généralisés ". _It was algebraic topology which focused on the simplest pro-
blems, e. g., the problem of introducing invariants which serve to distinguish a general 

(2) J. HADAMARD, Psychology of Invention in the Mathematical Field, Princeton (1949), 
p. 115. 

E. CARTAN, in his classical « Leçons sur la géométrie des espaces de Riemann » says, « La 
notion générale de variété est assez difficile à définir avec précision », p. 58. 

(3) Weyl's book was dedicated to Felix KLEIN, to whom he acknowledged for the funda-
mental ideas. Weyl's definition of a Riemann surface and Hausdorffs introduction of his 
axioms in 1914 must have made it superfluous to give formally a definition of a differentiable 
manifold. Chevalley's book on Lie groups (1946) exerted a great influence in the clarification 
of many concepts attached to it. 
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fiber bundle from a product bundle. Among them are the characteristic classes. 
Characteristic classes with real coefficients can be represented by the curvature of a 
connection, the simplest example being the Gauss-Bonnet formula, The bundle 
structure is now an integral part of differential geometry. 

(3) Variational Methods. — The importance of the notion of measure (length, area, 
volume, curvature, etc.) makes the variational method a powerful and indispensable 
tool. The study of geodesies on a Riemannian manifold is a brilliant chapter of 
mathematics. It led to Morse's creation of the critical point theory whose scope 
extends far beyond differential geometry. Another example is the Dirichlet problem 
and its application to elliptic operators. Multiple integral variational problems open 
a vista whose terrain is still rocky. It promises, however, a fertile field of work. When 
a geomatrical problem involves a function, either over the given manifold or in some 
related functional space, it always pays to look at its critical values and the second 
variation at them. Much of differential geometry utilizes this idea, in its various 
ramifications. The importance of variational method in differential geometry can 
hardly be over-emphasized. 

(4) Elliptic Differential Systems. — The geometrical properties of differential geo-
metry are generally expressed by differential equations or inequalities. Contrary 
to analysis special systems with their special properties received more attention. 
While analysis is the main tool, geometry furnishes the variety. Differential systems 
on manifolds with or without boundary are the prime objects of study. 

Elliptic systems occupy a central position because of their rich properties, which 
follow from the severe restrictions on the set of solutions. Hodge's harmonic diffe-
rential forms, with their applications to Kahlerian manifolds, will remain a crucial 
landmark. A simple idea of Bochner relates them to curvature and leads to vanishing 
theorems when the curvature satisfies proper " positivity " conditions. This has 
remained a standard method in the establishment of such theorems, which in turn 
give rise to existence theorems. The indices of linear elliptic operators on a compact 
manifold include some of the deepest invariants of manifolds (Atiyah, Bott, Singer). 

In the study of mappings an important problem consists in the analysis of the sin-
gularities. Important progress has been made recently on the singularities of diffe-
rentiable mappings (Whitney, Thorn, Malgrange, Mather). If the mappings are 
defined by elliptic differential equations, cases are known where the singularities take 
relatively simple form. Singularities in differential geometry remain a relatively 
untouched subject. 

C. Formulation of some problems with discussion of related results. 

We will attempt to discuss some areas where it is believed that fruitful researches 
can be carried out. The limited time at my disposal and, above all, my own limitation 
make it impossible for the treatment to be even remotely exhaustive. Any subject 
left out carries no implication that it is considered less significant. 

My object is to amuse you by stating some very simple problems which have so 
far defied the efforts of geometers. The danger in formulating such problems is that 
the line distinguishing them from mathematical puzzles is thin. Personally I think 
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there is no such line except that the " serious " problems concern with a new domain 
where the phenomena are not well understood and the basic concepts not well deve-
lopped. Geometry and analysis on manifolds are still at this stage and will remain so for 
years to come. When such problems are solved, similar ones will tend toward puzzles. 

Many of the problems to be given below are known. It is hoped that its collection 
may attract mathematicians not engaged in this field and lead to further progress. 

1. RIEMANNIAN MANIFOLDS WHOSE SECTIONAL CURVATURES KEEP A CONSTANT SIGN 

It was known to Riemann that the local properties of a Riemannian structure are 
completely determined by its sectional curvature. The latter is a function R(a) of a 
two-dimensional subspace a of the tangent space at a point x, which is equal to the 
gaussian curvature of the surface generated by the geodesies tangent to a at x. Mani-
folds for which R(a) keeps a constant sign for all a have a simple geometrical meaning. 
For their global study it is important to require that they are not proper open subsets 
of larger manifolds and, following Hopf and Rinow, it is customary to impose the 
stronger completeness condition: every geodesic can be indefinitely extended. In 
fact, without the completeness requirement the sign of the sectional curvature imposes 
hardly any condition on the manifold, as Gromov [21] proved that there exists on any 
non-compact manifold a Riemannian metric for which the range of the values of R(&) 
is any open interval on the real line. 

For complete Riemannian manifolds M for which R(<r) keeps the same sign the two 
classical theorems are: 

(1) THEOREM OF HADAMARD-CARTAN. — If R(a) ^ 0, the universal covering 
manifold of M is diffeomorphic to Rn, n = dim M. 

(2) THEOREM OF BONNET-MYERS. — If R(a) ^ c (= const) > 0, M has a diameter 
< 7u/c1/2 and is therefore compact. 

The case of positive curvature turns out to be more elusive. Cheeger and Grù-
moli [9] achieved what is essentially a structure theory of non-compact complete 
Riemannian manifolds M with R(a) ^ 0 (all a) by proving the following theorem. 
There is in M a compact totally geodesic and totally convex submanifold SM (to be 
called the soul of M) without boundary such that M is diffeomorphic to the normal 
bundle of SM. If the sectional curvature is strictly positive, then Gromoll and 
Meyer [20] proved that the soul is a point and M is diffeomorphic to Rn. In particular, 
M must be simply connected. 

Compact Riemannian manifolds of positive curvature obviously satisfy the stronger 
condition R(<r) ^ c > 0 (all o). By the Bonnet-Myers Theorem they are identical 
with the complete Riemannian manifolds with the same property. They are not 
necessarily simply connected, as the example of the non-euclidean elliptic space shows. 
So far the simply connected compact differentiable manifolds known to admit a 
Riemannian metric of positive curvature are the following [3]: (1) the n-sphere; (2) the 
complex projective space; (3) the quaternion projective space; (4) the Cayley plane; 
(5) two manifolds discovered by Berger, of dimensions 7 and 13 respectively. 

It is very unlikely that there are no others, but nothing more is known. The follow-
ing question was asked by H. Hopf: 
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PROBLEM I. — Does the product of two 2-dimensional spheres admit a Riemannian 
metric of strictly positive curvature ? 

More generally, it is not known whether the exotic 7-spheres, some of which are 
bundles of 3-spheres over 4-spheres, admit Riemannian metrics of positive curvature. 
The answer to the question in Problem I is probably negative. A supporting evidence 
is furnished by the following theorem of Berger [5] : Let M and JV be compact Rieman-
nian manifolds. Let g(t) be a family of Riemannian structures on M x N9 such 
that g(0) is the product structure and such that the following condition is satisfied: 

dR(a) I 
dt >0 

for all G spanned at x E M x N by a tangent vector to M and a tangent vector to N. 
Then 

dR(a) = 0 
r = o dt 

for all such a. 
To get deeper topological properties of a manifold of positive curvature Rauch 

introduced the notion of pinching. M is said to be ^-pinched if 0 < ß < R(a) < 1 
for all a. After the pioneering work of Rauch the following are the main theorems 
on the topology of compact pinched Riemannian manifolds of positive curvature: 

(1) (Berger-Klingenberg) [4, 25]. If a simply connected Riemannian manifold of 

positive curvature is ß-pinched, ß > - , it is homeomorphic to the «-sphere; if ß = -

and it is not homeomorphic to the «-sphere, it is isometric to a symmetric space of 
rank 1. 

(2) (Gromoll-Calabi) [19]. Let M be an «-dimensional compact simply connected 
Riemannian manifold of positive curvature. There exists a universal constant 
ß(n) < 1, depending only on «, such that if M is /?(«)-pinched, it is diffeomorphic to the 
standard «-sphere. 

Similar problems can be studied on the global implications of curvature properties 
of complex Kählerian manifolds. A new feature is the notion of holomorphic sectional 
curvature, i. e., sectional curvature R(<r)9 where a is the two-dimensional real space 
underlying a complex line in the complex tangent space. A most attractive question 
is the following one formulated by Frankel: 

PROBLEM II. — Let M be a compact Kählerian manifold of positive sectional curva-
ture. Is M biholomorphically equivalent to the complex projective space? 

Andreotti and Frankel [17] proved that the answer is affirmative if M is of dimen-
sion 2. The proof makes use of the classification of algebraic surfaces. Partial results 
were recently obtained by Kobayashi and Ochiai [26] for 3 dimensions. 

2. E U L E R - P O I N C A R é CHARACTERISTIC 

Among the important topological invariants of a manifold is the Euler-Poincaré 
characteristic. Its role is well-known on problems such as the Lefschetz fixed-point 
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theorem, singularities of vector fields, and indices of some elliptic operators. Geo-
metrically it is closely related to the total curvature (curvatura integra) as expressed 
by the Gauss-Bonnet formula 

( - l)m 

(LSh.:Ì2mSjl.,j2m^hÌ2JlJ2 ' ' ' RÌ2m-lÌ2mJ2m -lhJ^V W 

Here M is a compact orientable Riemannian manifold of even dimension n = 2m, 
X(M) is its Euler-Poincaré characteristic, dv is the volume element, and Rijkl are the 
components of the curvature tensor relative to ortho-normal frames. The Bilmmmi2m 
is the Kronecker symbol and is zero if ix,..., i2m do not form a permutation of 1, . . . , 2m 
and is equal to H- 1 or — 1 according as the permutation is even or odd. 

In spite of the explicit expression for x(M) the following has not been established: 

PROBLEM III AND CONJECTURE. — If M has sectional curvatures ^ 0, then %(M) ^ 0. 
If M has sectional curvatures < 0, then %(M) ^ 0 or < 0, according as n = 0 or 2 mod 4. 

The above statement has been proved for n = 4 [10] and for the case that M has 
constant sectional curvature. A first approach would be to study the sign of the inte-
grand in the Gauss-Bonnet formula, a purely algebraic problem. Even this algebraic 
problem seems to be of great interest [33]. 

As with the classical Gauss-Bonnet formula the relationship is more useful for 
compact manifolds with boundary (in which case a boundary integral should be added 
to make the formula (1) valid) and the problem is more interesting for non-compact 
manifolds, because a deeper study of the geometry will then be necessary. We will 
denote by C(M) the right-hand side of (1) and we shall formulate the problem: 

PROBLEM IV. — Let M be a complete Riemannian manifold of even dimension. 
Suppose x(M) and C(M) both exist, the latter meaning that the corresponding integral 
converges. Find a geometrical interpretation of the difference 

5(M) = x(M) - C(M). 

Of course S(M) = 0 if M is compact. In two dimensions Cohn-Vossen's classical 
inequality says that ô(M) ^ 0. For a class of two-dimensional manifolds Finn and 
A. Huber [16, 23] obtained a geometrical interpretation of <5(M), which implies that it 
is non-negative. Partial results on Problem IV have been obtained by E. Portnoy [30]. 
Perhaps the case of Kählerian manifolds has a simpler answer and should be studied 
first. 

In a different direction Satake [31] obtained a Gauss-Bonnet formula for his V-mani-
folds and applied it to automorphic functions and number theory. F-manifolds are 
essentially manifolds with singularities of a relatively simple type. 

Another problem on the Euler-Poincaré characteristic concerns compact affinely 
connected manifolds which are locally flat. These can be described as manifolds with 
a linear structure, i. e., having a covering by coordinate neighborhoods such that the 
coordinate transformation in overlapping neighborhoods is linear. 

PROBLEM V. — Let M be a compact manifold with an affine connection which is 
locally flat. Is its Euler-Poincaré characteristic equal to zero? 
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Bensecri proved that the answer is affirmative if M is of two dimensions (For proof 
and generalization cf. Milnor [27]). The high-dimensional case has been investigated 
by L. Auslander who proved the theorem [1]: suppose the affine connection be complete 
and suppose that the homomorphism h : n^(M) -> GL(n, R) defined by the holonomy 
group is not an isomorphism of the fundamental group n^(M) onto a discrete subgroup 
of GL(n, R). Then X(M) = 0. 

It is not known whether h can imbed n^(M) as a discrete subgroup of GL(n9 R). 
In spite of great developments in algebraic topology there are simple problems 

on the Euler-Poincaré characteristic which remain unanswered. 

3. MINIMAL SUBMANIFOLDS 

A minimal submanifold is an immersion x : Mn -> XN of an «-dimensional diffe-
rentiable manifold M" (or simply M) into a Riemannian manifold XN of dimension N, 
which locally solves the Plateau problem : Every point XEM has a neighborhood U 
such that U is of smallest «-dimensional area compared with other «-dimensional 
submanifolds having the same boundary dU. Analytically the condition can be 
expressed as follows: Let D2x be the second differential on M in the sense of Levi-
Civita. Then (D2x, f), where £ is a normal vector to M at x, is a quadratic differential 
form, the second fundamental form relative to ^. The differential equation to be 
satisfied by M is 

Tr (D2x9 0 = 0, all t (2) 

It is a system of non-linear elliptic partial differential equations of the second order, 
whose number is equal to the codimension N — «. A minimal submanifold of dimen-
sion one is a geodesic. 

We wish to study the properties of complete minimal submanifolds in a given 
Riemannian manifold XN (cf. [12]). Except for geodesies the interest has so far been 
restricted to the case when the ambient space XN is either the Euclidean space EN 

or the unit sphere SN(1) imbedded in EN + 1. 
For a minimal submanifold x : M" -* EN in the Euclidean space a condition equi-

valent to (2) is that the coordinate functions are harmonic (relative to the induced 
metric). It follows that for « > 0 a complete minimal submanifold in EN is non-
compact. 

For various reasons the case of codimension one (i. e., the minimal hypersurfaces) 
is the most important. Let xl9. . .9x„9 z be the coordinates in En + 1. Consider 
minimal hypersurfaces defined by the equation 

z = F(xl9...9xn) (3) 

for all x i , . . . , x„. The following fundamental theorem generalizes the classical 
theorem of Bernstein and was the combined effort of de Giorgi (« = 3), Almgren 
(« = 4), Simons (« < 7), Bombieri, de Giorgi, Giusti (« ^ 8) [6, 32]. The minimal 
hypersurface defined by (3) must be a hyperplane for « ^ 7 and is not always a hyper-
plane for « ^ 8. 

The main reason for this difference is the existence of absolute minimum cones in 
high-dimensional Euclidean space, which in turn depends on properties of compact 
minimal hypersurfaces in S"(l). From a general viewpoint the study of compact 
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minimal submanifolds in SN(1) is attractive for its own sake. The first uniqueness 
theorem is the theorem of Almgren-Calabi [11]. If a two-sphere is immersed as a 
minimal surface in 53(1), it must be the equator. 

By a counter-example of Hsiang [22] this theorem is not true for the next dimension. 
However, the following question, which can be designated as the " spherical Bernstein 
problem ", is unanswered: 

PROBLEM VI. — Let the «-sphere be imbedded as a minimal hypersurface in Sn+1(l). 
Is it an equator? 

Two-dimensional minimal surfaces in EN and in SN(1) have been more thoroughly 
studied, because of the application of complex function theory. If the surface is itself 
a two-sphere (hence in SN(1)), severe restriction is imposed for global reason and we 
have the following theorem (Boruvka, do Carmo, Wallach, Chern, but mainly 
Calabi [8, 14]). Let the two-sphere be immersed in SN(1) as a minimal surface, such 
that it does not belong to an equator. Then we have: (1) N is even; (2) The total area 
of the surface is an integral multiple of 2n; (3) If the induced metric is of constant Gaus-
sian curvature, it is completely determined up to motions in SN(1) and the Gaussian 
curvature has the value 

K= . * , iV = 2m. (4) 
m(m + 1) 

(4) There are minimal two-spheres in SN(1) of non-constant Gaussian curvature; all 
these with a given area form a finite-dimensional space. 

The immersion of the «-sphere as a minimal submanifold of SN(1) is a fascinating 
problem. If the induced metric has constant curvature, the immersion is given by 
the spherical harmonics (Takahashi). For « > 2 two isometric minimal immersions 
Sn(a) -> SN(1) are not necessarily equivalent under the motions of the ambient space 
(do Carmo, Wallach [15]). In view of the precise results on the two-sphere we wish 
to propose the following problem: 

PROBLEM VII. — Consider minimal immersions Sn -> SN(1) with total area ^ A 
( = const) and identify those which differ by a motion of the ambient space. Is the 
resulting set a finite-dimensional space with some natural topology? 

4. ISOMETRIC MAPPINGS 

A differentiable mapping / : M -• F of Riemannian manifolds is called isometric 
if it preserves the lengths of tangent vectors. It is therefore necessarily an immersion, 
and dim M ^ dim V. Classical differential geometry deals almost exclusively with 
the case that V is the Euclidean space EN of dimension N. We believe this is the most 
interesting case and we will adopt this restriction in our discussion. 

The first problem is that of existence. Since the fundamental tensor on a Rieman-
nian manifold of dimension n involves «(« + l)/2 components, Schiarii conjectured 
in 1871 that every Riemannian manifold of dimension « can be locally imbedded 

in EN, with N = -«(« + 1). This was proved by Elie Cartan in 1927 for the real 

analytic case. For smooth non-analytic manifolds this local isometric imbedding 
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problem is unsolved, even for « = 2, unless some restriction on the metric is imposed 
such as the Gaussian curvature keeping a constant sign. In other words, it is not 
known whether any smooth two-dimensional Riemannian manifold can be locally 
isometrically imbedded in E3. The answer is probably negative. 

The two important global imbedding theorems are: 

(1) (Weyl's Problem). A compact two-dimensional Riemannian manifold of positive 
Gaussian curvature can be isometrically imbedded in E3 (as a convex surface). 

(2) (Nash's Theorem [18, 28]). A compact (resp. non-compact) C00 Riemannian 
manifold of dimension « can be isometrically imbedded in EN

9 

N = -«(3« + 11) (resp. N = 2(2« + 1)(3« + 7)) (4) 

The second problem is the uniqueness of the isometric imbedding, also called rigidity, 
which is the problem whether an isometric immersion is determined up to a rigid 
motion of the ambient space EN. Most interesting is the classical case of surfaces 
in E3. Cohn-Vossen proved the rigidity of compact surfaces with Gaussian curva-
ture K > 0 and the theorem was extended by Voss [35] to the case K ^ 0. Even 
before Cohn-Vossen, Liebmann proved that a smooth family of isometric compact 
convex surfaces (i. e., K > 0) is trivial, i. e., it consists of the surfaces obtained by the 
rigid motion of one member of the family. It is not known whether the same is true 
when the curvature condition is dropped and we believe the following problem is 
fundamental : 

PROBLEM VIII. — Let M be a compact surface and I be the interval — 1 < t < 1. 
Let f: M x I -*• E3 be a differentiable mapping such that ft : M -*• E3 defined 
by fi(x) = f(x, t), XEM, tE I, is an immersion for each t. Suppose that the metric ds2 

induced by f on M is independent of t. Does there exist a rigid motion g(t) such 
that 

/,(*) = *«/o(*)> xeM, (5) 

where the right-hand side denotes the action on f0 by g(t)7 
The following remarks may be relevant to the problem. Cohn-Vossen [13] proved 

the existence of an unstable family of compact surfaces of revolution, i. e., that the above 
conclusion is not true if the hypothesis that ds2 is independent of t is replaced by 

- A 2 U o = ^ ^ 2 | r = 0 = 0 (6) 

There are well-known examples showing that Cohn-Vossen's rigidity theorem is 
not true without the convexity condition K ^ 0. A generalization of the latter condi-
tion to surfaces of higher genus is the notion of tightness. Let f\ M -* E3 be an 
immersed surface. The tangent plane at a point x is a local (resp. global) support 
plane if a neighborhood of the surface at x (resp. the whole surface f(M)) lies at one 
side of it. The surface is called tightly immersed if every local support plane is a global 

(4) The value for N in the case of non-compact manifolds is an improvement of NASH'S 
value by GREENE [18]. 
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support plane. A. D. Alexandrow proved that a real analytic tightly imbedded surface 
of genus one is rigid and Nirenberg [29] replaced the analyticity condition by some 
other conditions. 

On the other hand, the notion of tightness has a meaning for polyhedral surfaces. 
In this case the rigidity problem asks whether the congruence of corresponding faces 
of two tightly imbedded polyhedral surfaces implies that they differ by a rigid motion. 
Cauchy's classical theorem says that this is true if the surfaces are of genus zero. But 
Banchoff [2] has constructed examples showing that this is untrue for surfaces of genus 
one. From these remarks it is anybody's guess whether the answer to the question 
in Problem VIII is affirmative or negative. 

When M is of dimension greater than two, isometry is a strong condition and there 
are local rigidity theorems. 

5. HOLOMORPHIC MAPPINGS 

A holomorphic mapping f'.M -> V of complex manifolds is a continuous mapping 
which is locally denned by expressing the coordinates of the image point as holomorphic 
functions of those of the original point. The most significant example is the case 
when M is the complex line C and V is the complex projective line Pt(C) (or the Riemann 
sphere), in which case the mapping is known as a meromorphic function. Much 
recent progress has been made in extending classical geometrical function theory to 
the study of holomorphic mappings. 

A holomorphic mapping is called non-denegerate if the Jacobian matrix is of maxi-
mum rank at some point. For given M, V there may not exist a non-degenerate 
holomorphic mapping. Let B be a closed subset of V. Classically the following 
problem has been much studied. 

Intersection or non-existence problem. Find B such that there is no non-dege-
nerate holomorphic mapping M -» V — B9 i. e., every non-degenerate holomorphic 
mapping / : M -> V has the property f(M) n B ^ 0 . 

The Picard theorem concerns the case M = C, V = Pi(C), and B is the set of three 
distinct points. Clearly if the property holds for B9 it holds for a subset containing B9 
so that a stronger theorem results from a smaller subset B. In view of the extreme 
importance and elegance of the Picard theorem, we wish to state the following conjec-
rure of Wu: 

PROBLEM AND CONJECTURE IX. — Let C„ be the «-dimensional complex number 
space and Pn(C) the «-dimensional complex projective space. Let B be the set of 
« + 2 hyperplanes of Pn(C) in general position (i. e., any « + 1 of them are the faces of 
a non-degenerate «-simplex). Then there is no non-degenerate holomorphic mapping 
Cn - Pn(Q - B. 

The Picard theorem says that this is true for « = 1. Wu has established this for 
« ^ 4. Moreover, if we set 

p(n) = 

n ^2 

+ 1 ) + 1, « even 

n + 1\ (n + 3 
4- 1, « odd, 
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and let B' be the set of p(n) hyperplanes in general position in Pn(C), then Wu [36] 
proved that every holomorphic mapping / : Cn -> Pn(C) — B' must reduce to a 
constant. 

A far-reaching generalization of the Picard theory is the equi-distribution theory 
of Nevanlinna, which studies the frequency that a non-constant meromorphic function 
takes given values. In terms of vector bundles the problem can be generalized as 
follows [7]. Let M be a complex manifold and p: E ->• M a holomorphic vector 
bundle over M. A holomorphic mapping s: M -• E is called a section if p -s = iden-
tity. Let Wbe a finite-dimensional vector space of holomorphic sections. Suppose 
the manifold and the bundle fulfill some convexity conditions (which are automatically 
satisfied in the classical case). Then we can define, to each s( ^ 0) e W, a defect ò(s) 
satisfying the conditions: (1) 0 ^ ö(s) < 1; (2) ö(ls) = ô(s), XE C - { 0 } ; (3) ö(s) = 1 
if s has no zero. The equi-distribution problem is to find an upper bound of an average 
of ô(s) (a sum in the case of a finite number of sections and an integral in the case of an 
infinite set). The problem has been studied recently by several authors.-

Dual to the intersection problem is the extension problem: Given complex mani-
folds M, V and a closed subset A c M. When is a holomorphic mapping M — A -+ V 
the restriction of a holomorphic mapping M -» VI 

Many extension theorems are known. In several complex variables the most 
famous are the Hartogs and Riemann extension theorems, which concern with the case 
that V is either the complex line or a bounded set of it. We wish to formulate the 
following problem of Hartogs type where the curvature of the image manifold enters 
into play: 

PROBLEM X. — Let À be an «-ball in Cn, « ^ 2, and let F be a complete hermitian 
manifold of holomorphic sectional curvature ^ 0. Is it true that every holomorphic 
mapping of a neighborhood of the boundary ÔA of A into V extends into a holomorphic 
mapping of A into VI 

It is known that without the curvature condition on V the assertion is not true [24]. 
The problem belongs to an area which might be described as " hyperbolic complex 
analysis ". The philosophy is that negative curvature of the receiving space limits 
the holomorphic mappings and allows strong theorems. In fact, a bounded holo-
morphic function is a mapping into a ball which has the non-euclidean hyperbolic 
metric. 
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Added during proof March 12, 1971 : Problem X has been solved independently 
by P. Griffiths and B. SchifTman. 


